A generalized time series model based on Kumaraswamy distribution to predict double-bounded relative humidity data
Abstract
In this study, Kumaraswamy seasonal autoregressive moving average (KSARMA) model was developed to predict double-bounded relative humidity time-series data. In the proposed model, we used the conditional maximum-likelihood method to estimate parameters of the model. For the conditional score vector and conditional Fisher information matrix, the closed type expression were derived. This paper conjointly discusses interval estimation, hypothesis testing, model selection and forecasting. We also used a Monte Carlo simulation to evaluate the finite sample performance of conditional likelihood estimators (CMLEs) and white noise test.
References
Akaike H (1974). A new look at the statistical model identication. IEEE Transactions
on Automatic Control. IEEE Transactions on Automatic Control, 19(6), 716-723.
Andersen BA (1970). Asymptotic properties of conditional maximum-likelihood estimators.
J R Stat Soc Ser B., 32(1),283-301.
Benjamin M. A., Rigby, R. A., Stasinopoulos D. M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association, 98(461), 214-223.
Cribari-Neto F., Zeileis A. (2010). Beta regression in R. Journal of Statistical Software, 34(2).
da Silva C., Migon H., Correia L. (2011). Dynamic bayesian beta models. Computational Statistics & Data Analysis, 55 (6),2074-2089.
Davison AC, Hinkley DV (1997). Bootstrap methods and their application. Cambridge University Press.
Dunn, P. K., Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5 (3), 236-244.
Fbio M.Bayer, Renato J. Cintra and Francisco Cribari-Neto (2018). Beta seasonal autoregressive moving average models. J. Stat. Computation and Simulation, 88(15), 2961-2981.
Fbio Mariano Bayer, Dbora Missio Bayer, Guilherme Pumi (2017). Kumaraswamy autoregressive moving average models for double bounded environmental data. Journal of Hydrology, 1-25.
Ferrari S. L. P., Cribari-Neto F. (2004). Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31 (7), 799-815.
Fokianos K., Kedem B. (2004). Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis, 25 (2), 173-197.
Guolo A, Varin C. (2014). Beta regression for time series analysis of bounded data, with application to canada google
u trends. Ann Appl Stat., 8(1),74-88.
Gupta A. K., Nadarajah S. CRC Press, 2004. Handbook of Beta Distribution and Its Applications. CRC Press,
Gradshteyn I. S., Ryzhik I. M. (2007). Table of integrals, series, and products, 7th Edition. Academic Press.
Greene, W. H. (2011). Econometric Analysis, 7th Edition. Pearson
Hannan, E. (1973). The asymptotic theory of linear time-series models. Journal of Applied Probability, 10 (1), 130-145.
Hannan E. J., Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, 41 (2), 190-195.
Jones M. (2009). Kumaraswamys distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6 (1), 70-81.
Kedem B., Fokianos K. (2002). Regression models for time series analysis. John Wiley & Sons.
Kumaraswamy P. (1976). Sinepower probability density function. Journal of Hydrology, 31, 181-184.
Kumaraswamy P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46, 79-88.
Ljung G. M., Box G. E. P. (1978). On a measure of lack of t in time series models. Biometrika, 65(2), 297-303.
Lemonte A. J., Barreto-Souza W., Cordeiro G. M. (2013). The exponentiated Kumaraswamy distribution and its log-transform. Brazilian Journal of Probability and Statistics, 27(1), 31-53.
Mauricio J. A. (2008). Computing and using residuals in time series models. Computational Statistics and Data Analysis, 52(3), 1746-1763.
McCullag, P., Nelder J. (1989). Generalized linear models, 2nd Edition. Chapman and Hall.
Mitnik P. A. (2013). New properties of the Kumaraswamy distribution. Communications in Statistics-Theory and Methods, 42(5), 741-755.
Mitnik P. A., Baek S. (2013). The Kumaraswamy distribution: median-dispersion reparameterizations for regression modeling and simulation-based estimation. Statistical Papers, 54(1), 177-192.
Nadarajah S. (2008). .On the distribution of Kumaraswamy. Journal of Hydrology, 348(3-4), 568-569.
Neyman J, Pearson ES. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika, 20A(1/2),175-240.
Palm B. G., Bayer, F. M. (2017). Bootstrap-based inferential improvements in beta autoregressive moving average model. Communications in Statistics-Simulation and Computation, 1-20. DOI: 10.1080/03610918.2017.1300268.
Pawitan Y. (2001). In all likelihood: statistical modelling and inference using likelihood. Oxford: Oxford Science publications.
Pereira G. (2017). On quantile residuals in beta regression. ArXiv e-prints.
Rocha AV, Cribari-Neto F. (2009). Beta autoregressive moving average models. TEST,18(3),529-545.
Rocha, A. V., Cribari-Neto, F. (2017). Erratum to: Beta autoregressive moving average models. TEST, 26(2), 451-459.
Rao CR.(1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math Proc Cambridge Philos Soc., 44(1),50-57.
Schwarz G. (1978). Estimating the dimension of a model. Ann Statist., 6(2),461464.
Sherry M., A.K. Pathak and P.K. Sahoo. (2020). Impact of environmental indicators on the COVID-19 pandemic in Delhi , India. 1-10
Terrell GR. (2002). The gradient statistic. Comput Sci Stat., 34,206-215.
Wald A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Amer Math Soc., 54,426-482.
Full Text: pdf