Inference on parameter β of the Generalized Negative Binomial Distribution


Abstract


In this paper, we propose a generalized likelihood ratio test to discern
whether a set of data fits a Negative Binomial as a particular case of the
Generalized Negative Binomial Distribution(GNBD). The test attempts to
differentiate the GNBD from Negative Binomial (NBD) distribution when
fitting discrete data. A Monte Carlo simulation study was performed to investigate the power and the size of the proposed test, and results shows good performance in power and size under moderate sample sizes of the LRT test for testing hypotheses on parameter
β of the Generalized Negative Binomial Distribution. A Parametric Bootstrap for investigating the distribution of parameter β of the GNBD and a Bayesian approach for obtaining the posterior distribution of the GNBD parameters were also implemented. In order to illustrate the proposed methodology, we included two cases: a dataset of an entomological study on mosquitoes of malaria and another study on species of Malaysian butterflies.

DOI Code: 10.1285/i20705948v15n1p26

Keywords: Bootstrap, discrete distributions, count data, hypothesis testing, simulation.

References


Arefi, M., Borzadaran, G. R. M., and Vaghei, Y. (2016). Interval estimations for the mean of the generalized poisson and generalized negative binomial distributions. Communications in Statistics - Simulation and Computation, 45(6):1838-1864.

Cameron, C. A. and Trivedi, P. K. (1998). Regression analysis of count data. Econometric. Society Monographs No. 30. Cambridge University Press.

Casella, G. and Berger, R. L. (2002). Statistical inference. Duxbury Press, North

Scituate, MA.

Consul, P. C. and Famoye, F. (1995). On the generalized negative binomial distribution. Communications in Statistics: Theory and Methods, 24:459-472.

Consul, P. C. and Famoye, F. (2006). Lagrangian probality distributions. Birkh¨auser Basel.

Consul, P. C. and Shenton, L. R. (1972). Use of lagrange expansion for generating

discrete generalized probability distributions. SIAM Journal on Applied Mathematics, 23(2):239-248.

Corbet, A. S. (1941). The distribution of butterflies in the malay peninsula (lepid.). Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 16(10-12):101-116.

Drakeley, C., Schellenberg, D., Kihonda, J., Sousa, C. A., Arez, A. P., Lopes, D., Lines,J., Mshinda, H., Lengeler, C., Schellenberg, J. A., Tanner, M., and Alonso, P. (2003). An estimation of the entomological inoculation rate for ifakara: a semi-urban area in a region of intense malaria transmission in tanzania. Tropical Medicine & International Health, 8(9):767-774.

Famoye, F. (1997). Parameter estimation for generalized negative binomial distribution.Communications in Statistics-Simulation and Computation, 26(1):269-279.

Famoye, F. (1998a). Bootstrap based tests for generalized negative binomial distribution. Computing, 61(4):359-369.

Famoye, F. (1998b). Computer generation of generalized negative binomial deviates. Journal of Statistical Computation and Simulation, 60(2):107-122.

Gupta, R. C. (1974). Modified power series distribution and some of its applications. Sankhya: The Indian Journal of Statistics, Series B (1960-2002), 36(3):288-298.

Gupta, R. C. (1977). Minimum variance unbiased estimation in a modified power seriesdistribution and some of its applications. Communications in Statistics - Theory and Methods, 6(10):977-991.

Hassan, A., Jan, T., Raja, T., and Mir, K. (2004). A simple method for estimating

generalized negative binomial distribution. Soochow Journal of Mathematics, 30:411-418.

Islam, M. N. and Consul, P. C. (1986). Bayesian estimation in a generalized negative binomial distribution. Biometrical Journal, 28(3):259-266.

Izs´ak, R. (2008). Maximum likelihood fitting of the poisson lognormal distribution. Environmental and Ecological Statistics, 15(2):143-56.

Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distribution.

SIAM Journal on Applied Mathematics, 21(4):501-513.

Jani, P. N. (1977). Minimum variance unbiased estimation for some left-truncated modified power series distributions. Sankhya, Series B, 39:258-278.

Kumar, A., Ramesh Chandra, B., Shree Kant, S., Amarendra, M., and Krishna Murari, S. (2014). Methods of estimation of generalized negative binomial distribution. Journal of AgriSearch, 1(3):183-187.

Liu, J. (2001). Monte carlo strategies in scientific computing. new york: Springer.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

SAS Institute Inc. (2012). SAS/STAT Software, Version 9.4. Cary, NC.


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.