Bayesian inference for the reliability of generalized inverted exponential distribution under progressive type-I interval censoring


Abstract


In this paper, we consider the maximum likelihood (ML) and the Bayesian estimators of the parameters, reliability and hazard functions for the generalized inverted exponential distribution under progressive type-I interval censoring. We propose EM algorithm to obtain the ML estimators. The asymptotic confidence intervals are constructed based on the ML estimators. In order to construct the asymptotic confidence intervals of the reliability and hazard functions, we compute variances of them by using delta method. It is observed that the closed-form expressions for the Bayesian estimates cannot be obtained. So we use Tierney-Kadane’s approximation and Gibbs sampling method to obtain these estimates. We also derive the Bayesian credible intervals by using Gibbs sampling. Monte-Carlo simulation study is performed to compare the performances of the proposed methods concerning different sample sizes and censoring schemes. Finally, a real data set is analyzed for illustrative purposes.

DOI Code: 10.1285/i20705948v15n1p145

Keywords: Progressive interval type-I censoring; Generalized inverted exponential distribution; Bayes estimation; EM algorithm; Tierney-Kadane approximation; Gibbs sampling.

References


References

Abouammoh, AM and Alshingiti, AM (2009). Reliability estimation of generalized inverted exponential distribution. J.Statist. Comput. Simul., 79(11): 1301—1315.

Aggarwala R.(2001). Progressive interval censoring: some mathematical results with

applications to inference. Communications in Statistics-Theory and Methods. , 30(8-

: 1921-1935.

Ahmed EA.(2015). Estimation of some lifetime parameters of generalized Gompertz distribution under progressively type-II censored data. Applied Mathematical Modelling.

, 39(18), 5567-5578.

Allison, P.D. (2010). Survival analysis using SAS: A practical guide. NC: SAS Press.

Arabi Belaghi R, Noori Asl M, and Singh S. (2017). On estimating the parameters of

the Burr XII model under progressive type-I interval censoring. Journal of Statistical

Computation and Simulation. , 87(16): 3132-3151.

Ashour SK, Afify WM. (2007). Statistical analysis of exponentiated Weibull family

under type I progressive interval censoring with random removals. Journal of Applied

Sciences Research. , 3(12), 1851-1863.

Balakrishnan N. (2007). Progressive censoring methodology: an appraisal. Test. , 16(2):

Balakrishnan N. and Aggarwala R. (2000). Progressive censoring: theory, methods, and

applications. Springer Science & Business Media.

Belaghi AR, Asl MN, Singh S.(2017). On estimating the parameters of the Burr XII

model under progressive type-I interval censoring. Journal of Statistical Computation

and Simulation., 87(16): 3132-3151.

Chen DG, Lio YL, Jiang N. (2013). Lower confidence limits on the generalized exponential distribution percentiles under progressive type-i interval censoring. Communications in Statistics-Simulation and Computation., 42(9): 2106-2117.

Chen MH, Shao QM. (1999). Monte Carlo estimation of Bayesian credible and HPD

intervals. Journal of Computational and Graphical Statistics., 8(1): 69-92.

Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological)., 39(1): 1-22.

Dey S. and Dey T. (2014). On progressively censored generalized inverted exponential

distribution. J. Appl. Stat.

Dey S, Pradhan B. (2014). Generalized inverted exponential distribution under hybrid

censoring. Statistical methodology., 18: 101-114.

Dey S, Dey T and Luckett DJ.(2016). Statistical inference for the generalized inverted

exponential distribution based on upper record values. Mathematics and Computers

in Simulation., 120: 64-78.

Dey S, Dey T and Luckett DJ.(2016). Generalized inverted exponential distribution under constant stress accelerated life test: Different estimation methods with application.

Quality and Reliability Engineering International., 36(4): 1296-1312.

Du Y, Guo Y and Gui W.(2018). Statistical inference for the information entropy

of the log-logistic distribution under progressive type-I interval censoring schemes.

Symmetry., 10 (10):445.

Dube M, Krishna H. and Garg R.(2016). Generalized inverted exponential distribution under progressive first-failure censoring. Journal of Statistical Computation and

Simulation., 86(6), 1095-1114.

EL-Sagheer RM. (2016). Estimation of parameters of Weibull–Gamma distribution based

on progressively censored data. Statistical Papers. 59(2), 725-757.

Elandt-Johnson RC, and NL Johnson. (1980). Survival models and data analysis. New

York: John Wiley & Sons.

Greene, WH. (2000). Econometric analysis. Pearson Education India.

Lawless, JF. (2011). Statistical models and methods for lifetime data.. John Wiley and

Sons

Lin, CT., Wu, SJ, and Balakrishnan, N. (2009). Planning life tests with progressively

Type-I interval censored data from the lognormal distribution. Journal of Statistical

Planning and Inference. 139(1), 54-61.

Lio Y., Chen D.G., and Tsai T.R. (2011). Parameter estimations for generalized Rayleigh

distribution under progressively type-I interval censored data. Open Journal of Statistics, 01(02):46-–57.

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press.

Mahmoud M.A.W., Ramadan D.A. and Mansour MMM. (2012). Estimation of lifetime

parameters of the modified extended exponential distribution with application to a

mechanical model. Communications in Statistics-Simulation and Computation., 2020;

-14.

McLachlan, G.J. and Krishnan T. (2007). The EM algorithm and extensions . John

Wiley & Sons.

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics.

, 21(6), 1087-1092.

Ng H.K.T. and Wang Z. (2009). Statistical estimation for the parameters of Weibull distribution based on progressively type-I interval censored sample. Journal of Statistical

Computation and Simulation, 79(2), 145-159.

Ng H.K.T., Chan P.S. and Balakrishnan N. (2002). Estimation of parameters from

progressively censored data using EM algorithm. Computational Statistics & Data

Analysis , 39(4), 371-386.

Peng, X.Y. and Yan, Z.Z. (2013). Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring. Acta Mathematicae Applicatae

Sinica, English Series , 29(2), 391-402.

Singh, S. and Tripathi, Y.M. (2018). Estimating the parameters of an inverse Weibull

Electronic Journal of Applied Statistical Analysis 17

distribution under progressive type-I interval censoring. Statistical Papers, 59(1):21—

Teimouri M. (2020). Bias corrected maximum likelihood estimators under progressive

type-I interval censoring scheme. Communications in Statistics-Simulation and Computation, 1–12.

Teimouri, M. and Gupta, A.K. (2012). Estimation methods for the Gompertz-Makeham

distribution under progressively type-I interval censoring scheme. Academy Science

Letters. , 35 (3):227—235.

Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments

and marginal densities. J Amer Statist Assoc. , 81: 82-86.

Xiuyun, P. and Zaizai, Y. (2011). Parameter estimations with gamma distribution

based on progressive type-I interval censoring. In IEEE International Conference on

Computer Science and Automation Engineering, Shanghai, China. 2011, Vol. 1; IEEE,

—453


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.