Bayesian inference for the reliability of generalized inverted exponential distribution under progressive type-I interval censoring
Abstract
References
References
Abouammoh, AM and Alshingiti, AM (2009). Reliability estimation of generalized inverted exponential distribution. J.Statist. Comput. Simul., 79(11): 1301—1315.
Aggarwala R.(2001). Progressive interval censoring: some mathematical results with
applications to inference. Communications in Statistics-Theory and Methods. , 30(8-
: 1921-1935.
Ahmed EA.(2015). Estimation of some lifetime parameters of generalized Gompertz distribution under progressively type-II censored data. Applied Mathematical Modelling.
, 39(18), 5567-5578.
Allison, P.D. (2010). Survival analysis using SAS: A practical guide. NC: SAS Press.
Arabi Belaghi R, Noori Asl M, and Singh S. (2017). On estimating the parameters of
the Burr XII model under progressive type-I interval censoring. Journal of Statistical
Computation and Simulation. , 87(16): 3132-3151.
Ashour SK, Afify WM. (2007). Statistical analysis of exponentiated Weibull family
under type I progressive interval censoring with random removals. Journal of Applied
Sciences Research. , 3(12), 1851-1863.
Balakrishnan N. (2007). Progressive censoring methodology: an appraisal. Test. , 16(2):
Balakrishnan N. and Aggarwala R. (2000). Progressive censoring: theory, methods, and
applications. Springer Science & Business Media.
Belaghi AR, Asl MN, Singh S.(2017). On estimating the parameters of the Burr XII
model under progressive type-I interval censoring. Journal of Statistical Computation
and Simulation., 87(16): 3132-3151.
Chen DG, Lio YL, Jiang N. (2013). Lower confidence limits on the generalized exponential distribution percentiles under progressive type-i interval censoring. Communications in Statistics-Simulation and Computation., 42(9): 2106-2117.
Chen MH, Shao QM. (1999). Monte Carlo estimation of Bayesian credible and HPD
intervals. Journal of Computational and Graphical Statistics., 8(1): 69-92.
Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological)., 39(1): 1-22.
Dey S. and Dey T. (2014). On progressively censored generalized inverted exponential
distribution. J. Appl. Stat.
Dey S, Pradhan B. (2014). Generalized inverted exponential distribution under hybrid
censoring. Statistical methodology., 18: 101-114.
Dey S, Dey T and Luckett DJ.(2016). Statistical inference for the generalized inverted
exponential distribution based on upper record values. Mathematics and Computers
in Simulation., 120: 64-78.
Dey S, Dey T and Luckett DJ.(2016). Generalized inverted exponential distribution under constant stress accelerated life test: Different estimation methods with application.
Quality and Reliability Engineering International., 36(4): 1296-1312.
Du Y, Guo Y and Gui W.(2018). Statistical inference for the information entropy
of the log-logistic distribution under progressive type-I interval censoring schemes.
Symmetry., 10 (10):445.
Dube M, Krishna H. and Garg R.(2016). Generalized inverted exponential distribution under progressive first-failure censoring. Journal of Statistical Computation and
Simulation., 86(6), 1095-1114.
EL-Sagheer RM. (2016). Estimation of parameters of Weibull–Gamma distribution based
on progressively censored data. Statistical Papers. 59(2), 725-757.
Elandt-Johnson RC, and NL Johnson. (1980). Survival models and data analysis. New
York: John Wiley & Sons.
Greene, WH. (2000). Econometric analysis. Pearson Education India.
Lawless, JF. (2011). Statistical models and methods for lifetime data.. John Wiley and
Sons
Lin, CT., Wu, SJ, and Balakrishnan, N. (2009). Planning life tests with progressively
Type-I interval censored data from the lognormal distribution. Journal of Statistical
Planning and Inference. 139(1), 54-61.
Lio Y., Chen D.G., and Tsai T.R. (2011). Parameter estimations for generalized Rayleigh
distribution under progressively type-I interval censored data. Open Journal of Statistics, 01(02):46-–57.
Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press.
Mahmoud M.A.W., Ramadan D.A. and Mansour MMM. (2012). Estimation of lifetime
parameters of the modified extended exponential distribution with application to a
mechanical model. Communications in Statistics-Simulation and Computation., 2020;
-14.
McLachlan, G.J. and Krishnan T. (2007). The EM algorithm and extensions . John
Wiley & Sons.
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics.
, 21(6), 1087-1092.
Ng H.K.T. and Wang Z. (2009). Statistical estimation for the parameters of Weibull distribution based on progressively type-I interval censored sample. Journal of Statistical
Computation and Simulation, 79(2), 145-159.
Ng H.K.T., Chan P.S. and Balakrishnan N. (2002). Estimation of parameters from
progressively censored data using EM algorithm. Computational Statistics & Data
Analysis , 39(4), 371-386.
Peng, X.Y. and Yan, Z.Z. (2013). Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring. Acta Mathematicae Applicatae
Sinica, English Series , 29(2), 391-402.
Singh, S. and Tripathi, Y.M. (2018). Estimating the parameters of an inverse Weibull
Electronic Journal of Applied Statistical Analysis 17
distribution under progressive type-I interval censoring. Statistical Papers, 59(1):21—
Teimouri M. (2020). Bias corrected maximum likelihood estimators under progressive
type-I interval censoring scheme. Communications in Statistics-Simulation and Computation, 1–12.
Teimouri, M. and Gupta, A.K. (2012). Estimation methods for the Gompertz-Makeham
distribution under progressively type-I interval censoring scheme. Academy Science
Letters. , 35 (3):227—235.
Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments
and marginal densities. J Amer Statist Assoc. , 81: 82-86.
Xiuyun, P. and Zaizai, Y. (2011). Parameter estimations with gamma distribution
based on progressive type-I interval censoring. In IEEE International Conference on
Computer Science and Automation Engineering, Shanghai, China. 2011, Vol. 1; IEEE,
—453
Full Text: pdf