Identifying changes in predictors of business failures during and after the economic crisis in Italy
Abstract
References
Bisogno, M., Restaino, M., and Di Carlo, A. (2018). Forecasting and preventing bankruptcy: A conceptual review. African Journal of Business Management, 12(9):231-242.
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2):187-202.
D'Agostino, R. B., Lee, M.-L. T., Belanger, A. J., Cuples, L. A., Anderson, K., and Kannel, W. B. (1990). Relation of pooled logistic regression to time dependent Cox regression analysis: The Framingham Heart Study. Statistics in Medicine, 9(12):1501-1515.
Lane, W. R., Looney, S. W., and Wansley, J. W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking and Finance, 10(4):511-531.
Norton, E. C., Wang, H., and Ai, C. (2004). Computing interaction effects and standard errors in logit and probit models. The Stata Journal, 4(2):154-167.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1):109-131.
Pierri, F. and Caroni, C. (2017). Bankruptcy prediction by survival models based on current and lagged values of time-varying financial data. Communications in Statistics: Case Studies, Data Analysis and Applications, 3(3-4):62-70.
Full Text: pdf