Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications


Abstract


In this paper, we introduce a new continuous distribution of two parameterscalled as a generalized Quasi Lindley distribution (GQLD). The GQLD is asum of two independent Quasi Lindley distributed random variables. Compre-hensive statistical properties of the GQLD are provided in closed forms includesmoments, reliability analysis, stochastic ordering, stress-strength reliability, andthe distribution of order statistics. The parameters of the new distribution areestimated by the maximum likelihood, maximum product of spacings, ordinaryleast squares, weighted least squares, Cramer-von-Mises, and Anderson-Darlingmethods are considered. A simulation study is conducted to investigate theeciency of the proposed estimators and applications to real data sets are pro-vided.

DOI Code: 10.1285/i20705948v14n1p167

Keywords: Quasi Lindley distribution, Independent random variables, Method of maximum product of spacings, Methods of least squares, Methods of minimum distances.

References


D. V. Lindley, A ducial distributions and bayes theorem, Journal of the

Royal Statistical Society Series B, 20 (1958) 102{107.

S. Nedjar, H. Zeghdoudi, On gamma lindley distribution: Properties

and simulations, Journal of Computational and Applied Mathematics 298

(2016) 167{174.

C. Kumar, R. Jose, On double lindley distribution and some of its prop-

erties, American Journal of Mathematical and Management Sciences 38(1)

(2018) 23{43.

The generalized weighted lindley distribution: Properties, estimation, and

applications, Cogent Mathematics 3(1). doi:10.1080/23311835.2016.

L. Tomy, A retrospective study on lindley distribution, Biometrics and

Biostatistics International Journal 7(3) (2018) 163{169.

M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power

lindley distribution and associated inference, Computational Statistics and

Data Analysis (2013) 20{33.

M. Hassan, On the convolution of lindley distribution, Columbia Interna-

tional Publishing Contemporary Mathematics and Statistics 2(1) (2014)

{54.

R. Shanker, A. Mirsha, A quasi lindley distribution, African Journal of

Mathematics and Computer Science Research 6(4) (2013) 64{71.

M.Al-khazaleh, A. I. Al-Omari, A. khazaleh. A.M, Transmuted two-

parameter lindley distribution, Journal of Statistics Applications and Prob-

ability 5 (3) (2016) 421{432.

A. Al-Omari, A. Al-Nasser, F. Gogah, A double acceptance sampling plan

for quasi lindley distribution, Journal of the North for Basic and Applied

Sciences 3(2) (2018) 120{130.

A. Al-Omari, A. Al-Nasser, A two parameter quasi lindley distribution in

acceptance sampling plans from truncated life tests, Pakistan Journal of

Statistics and Operation Research 15 (2019) 39{47.

M. Shaked, J. Shanthikumar, Stochastic orders and their applications, dis-

tribution and associated inference, Academic Press, New York.

H. David, H. Nagaraja, Order Statistics, John Wiley and Sons, New York,

R. C. H. Cheng, N. A. K.Amin, Maximum product-of-spacings estima-

tion with applications to the log-normal distribution. distribution and as-

sociated inference, Tech. rep., Department of Mathematics, University of

Wales.

R. C. H. Cheng, N. A. K.Amin, Estimating parameters in continuous uni-

variate distributions with a shifted origin, Journal of the Royal Statistical

Society Series B (Methodological) 45 (3) (1983) 394{403.

J. Swain, S. Venkatraman, J.Wilson, Least squares estimation of distribu-

tion function in johnsons translation system., J. Stat. Comput. Simul 29

(1988) 271{297.

R. B. DAgostino, M. A. Stephens, Goodness-of-t techniques, Marcel

Dekker: New York, NY, USA.

A. Luceno, Fitting the generalized pareto distribution to data using maxi-

mum goodness-of-t estimators, Computational Statistics and Data Anal-

ysis 51 (2) (2006) 904{917.

T. Bjerkedal, Acquisition of resistance in guinea pigs infected with dierent

doses of virulent tubercle bacilli, American Journal of Epidemiol 72 (1)

(1960) 130{148.

D. N. P. Murthy, M. Xie, R.Jiang, Weibull models (wiley).

M. W. A. Ramos, P. R. D. Marinho, R. V. da Silva, G. M. Cordeiro, The

exponentiated lomax poisson distribution with an application to lifetime

data, Advances and Applications in Statistics 34 (2013) 107{135.

H. Akaike, A new look at the statistical model identication, IEEE Trans.

Autom. Control 19 (1974) 716{723.

G. Schwarz, Estimating the dimension of a model, Ann. Stat 6 (1978) 461{

E. J. Hannan, B. G. Quinn, The determination of the order of an au-

toregression, Journal of the Royal Statistical Society Series B, 41 (1979)

{195.

H. Bozdogan, Model selection and akaikes information criterion (aic): the

general theory and its analytical extensions, Psychometrika 52 (1987)

H. Camr, On the composition of elementary errors, Scand. Actuar. J 1

(1928) 13{74.

M. Stephens, Edf statistics for goodness of t and some comparisons, J.

Am. Stat. Assoc 69 (1974) 730{737.

M. Aarset, How to identify bathtub hazard rate, IEEE Transactions on

Reliability 36 (1987) 106{108.


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.