A non-parametric density estimate adaptation for population abundance when the shoulder condition is violated
Abstract
The non-parametric kernel density estimation is used in practice to estimate population abundance using the line transect sampling. In general, the classical kernel estimator of f(0) tends to be underestimated. In this article, a shifted logarithmic transformation of perpendicular distance is proposed for the kernel estimator when the shoulder condition is violated. Mathematically, the proposed estimator is more efficient than the classical kernel estimator. A simulation study is also carried out to compare the performance of the proposed estimators and the classical kernel estimators.
References
Al-Bassam, M., & Eidous, O. (2018). Combination of parametric and nonparametric estimators for population abundance using line transect sampling. Journal of Information and Optimization Sciences, 39(7), 1449–1462. https://doi.org/10.1080/02522667.2017.1367510
Albadareen, B., & Ismail, N. (2017). Several new kernel estimators for population abundance. AIP Conference Proceedings, 1830(1), 80018. https://doi.org/10.1063/1.4981002
Albadareen, B., & Ismail, N. (2018). Adaptive kernel function using line transect sampling. AIP Conference Proceedings, 1940, 020112. https://doi.org/10.1063/1.5028027
Albadareen, B., & Ismail, N. (2019). An Adaptation of Kernel Density Estimation for Population Abundance using Line Transect Sampling When the Shoulder Condition is Violated. International Journal of Innovative Technology and Exploring Engineering, 9(2), 3494–3498. https://doi.org/10.35940/ijitee.B6582.129219
Barabesi, L. (2000). Local likelihood density estimation in line transect sampling. Environmetrics, 11(4), 413–422. https://doi.org/10.1002/1099-095X(200007/08)11:43.0.CO;2-P
Bauer, R. K., Fromentin, J.-M., Demarcq, H., Brisset, B., & Bonhommeau, S. (2015). Co-Occurrence and Habitat Use of Fin Whales, Striped Dolphins and Atlantic Bluefin Tuna in the Northwestern Mediterranean Sea. PLOS ONE, 10(10), e0139218. https://doi.org/10.1371/journal.pone.0139218
Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Buckland, S. T. (1985). Perpendicular Distance Models for Line Transect Sampling. Biometrics, 41(1), 177. https://doi.org/10.2307/2530653
Buckland, S. T., Oedekoven, C. S., & Borchers, D. L. (2016). Model-Based Distance Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 21(1), 58–75. https://doi.org/10.1007/s13253-015-0220-7
Buckland, Stephen T. (1992). Fitting Density Functions with Polynomials. Applied Statistics, 41(1), 63. https://doi.org/10.2307/2347618
Buckland, Stephen T, Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001). Introduction to distance sampling: estimating abundance of biological populations (1st ed.). London: Oxford University Press. Retrieved from https://global.oup.com/academic/product/introduction-to-distance-sampling-9780198509271?q=9780198509271&cc=my&lang=en
Burnham, K. P., Anderson, D. R., & Laake, J. L. (1980). Estimation of Density from Line Transect Sampling of Biological Populations. Wildlife Monographs, (72), 3–202. Retrieved from http://www.jstor.org/stable/3830641
Charpentier, A., & Flachaire, E. (2015). Log-Transform Kernel Density Estimation of Income Distribution. L’Actualité Économique, 91(1–2), 141–159. https://doi.org/10.7202/1036917ar
Chen, F. Y., Chen, L. F., Hwang, W. H., & Huang, Y. H. (2014). Nonparametric methods for line transect surveys in the presence of measurement errors. Journal of Applied Science and Engineering, 17(2), 131–140. https://doi.org/10.6180/jase.2014.17.2.04
Chen, S. X. (1996a). A Kernel Estimate for the Density of a Biological Population by Using Line Transect Sampling. Applied Statistics, 45(2), 135. https://doi.org/10.2307/2986150
Chen, S. X. (1996b). Studying School Size Effects in Line Transect Sampling Using the Kernel Method. Biometrics, 52(4), 1283. https://doi.org/10.2307/2532844
Crain, B. R., Burnham, K. P., Anderson, D. R., & Lake, J. L. (1979). Nonparametric estimation of population density for line transect sampling using Fourier series. Biometrical Journal, 21(8), 731–748.
Devroye, L., & Gyorfi, L. (1985). Nonparametric Density Estimation: The L 1 View. Journal of the Royal Statistical Society. Series A (General) (1st ed., Vol. 148). New York: John Wiley and Sons. https://doi.org/10.2307/2981908
Eberhardt, L. L. (1968). A Preliminary Appraisal of Line Transects. The Journal of Wildlife Management, 32(1), 82. https://doi.org/10.2307/3798239
Eidous, O. M. (2005a). Bias correction for histogram estimator using line transect sampling. Environmetrics, 16(1), 61–69. https://doi.org/10.1002/env.671
Eidous, O. M. (2005b). On improving kernel estimators using line transect sampling. Communications in Statistics - Theory and Methods, 34(4), 931–941. https://doi.org/10.1081/STA-200054439
Eidous, O. M. (2012). A new kernel estimator for abundance using line transect sampling without the shoulder condition. Journal of the Korean Statistical Society, 41(2), 267–275. https://doi.org/10.1016/j.jkss.2011.09.004
Eidous, O. M. (2015). Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition. Journal of Information and Optimization Sciences, 36(4), 301–315. https://doi.org/10.1080/02522667.2013.867726
Fix, E., & Hodges, J. (1951). Nonparametric discrimination: consistency properties. DTIC Document, (May).
Gates, C. E., Marshall, W. H., & Olson, D. P. (1968). Line Transect Method of Estimating Grouse Population Densities. Biometrics, 24(1), 135. https://doi.org/10.2307/2528465
Gerard, P. D., & Schucany, W. R. (1999). Local bandwidth selection for Kernel estimation of population densities with line transect sampling. Biometrics, 55(3), 769–773. https://doi.org/10.1111/j.0006-341X.1999.00769.x
Ghosh, S. (2018). Kernel Smoothing: Principles, Methods and Applications (1st ed.). New York: Chapman & Hall. https://doi.org/10.1002/9781118890370
Igarashi, G., & Kakizawa, Y. (2018). Limiting bias-reduced Amoroso kernel density estimators for non-negative data. Communications in Statistics - Theory and Methods, 47(20), 4905–4937. https://doi.org/10.1080/03610926.2017.1380832
Mack, Y. P. (2002). Bias-corrected confidence intervals for wildlife abundance estimation. Communications in Statistics - Theory and Methods, 31(7), 1107–1122. https://doi.org/10.1081/STA-120004909
Mack, Y. P., & Quang, P. X. (1998). Kernel Methods in Line and Point Transect Sampling. Biometrics, 54(2), 606. https://doi.org/10.2307/3109767
Marron, J. S., & Ruppert, D. (1994). Transformations to Reduce Boundary Bias in Kernel Density Estimation. Journal of the Royal Statistical Society: Series B (Methodological), 56(4), 653–671. https://doi.org/10.1111/j.2517-6161.1994.tb02006.x
Miller, D. L., & Thomas, L. (2015). Mixture models for distance sampling detection functions. PLoS ONE, 10(3), 1–19. https://doi.org/10.1371/journal.pone.0118726
Miller, D., Rexstad, E., Thomas, L., Marshall, L., & Laake, J. (2016). Distance Sampling in R. BioRxiv. https://doi.org/10.1101/063891
Pollock, K. H. (1978). A Family of Density Estimators for Line-Transect Sampling. Biometrics, 34(3), 475. https://doi.org/10.2307/2530611
Quang, P. X. (1990). Confidence Intervals for Densities in Line Transect Sampling. Biometrics, 46(2), 459. https://doi.org/10.2307/2531450
Ramsey, F. L. (1979). Parametric Models for Line Transect Surveys. Biometrika, 66(3), 505. https://doi.org/10.2307/2335169
Schuster, E. F. (1985). Incorporating Support Constraints into Nonparametric Estimators of Densities. Communications in Statistics - Theory and Methods, 14(5), 1123–1136. https://doi.org/10.1080/03610928508828965
Silverman, B. W. (1981). Using Kernel Density Estimates to Investigate Multimodality. Journal of the Royal Statistical Society. Series B (Methodological), 43(1), 97–99. https://doi.org/10.1111/j.2517-6161.1981.tb01155.x
Silverman, B. W. (1986). Density estimation: For statistics and data analysis. Density Estimation: For Statistics and Data Analysis (1st ed.). London: Chapman & Hall. https://doi.org/10.1201/9781315140919
Wand, M. P., & Jones, M. C. (1995). Kernel Smoothing. (1st ed.). New York: Chapman & Hall. https://doi.org/10.2307/2534029
Zhang, S. (2001). Generalized likelihood ratio test for the shoulder condition in line transect sampling. Communications in Statistics - Theory and Methods, 30(11), 2343–2354. https://doi.org/10.1081/STA-100107690
Zhang, S. (2011). On parametric estimation of population abundance for line transect sampling. Environmental and Ecological Statistics, 18(1), 79–92. https://doi.org/10.1007/s10651-009-0121-4
Zhang, S., & Karunamuni, R. J. (2000). On nonparametric density estimation at the boundary. Journal of Nonparametric Statistics, 12(2), 197–221. https://doi.org/10.1080/10485250008832805
Zhang, S., Li, Z., & Zhang, Z. (2020). Estimating a Distribution Function at the Boundary. Austrian Journal of Statistics, 49(1), 1–23. https://doi.org/10.17713/ajs.v49i1.801
Full Text: pdf