Voting-based Approach in Consensus Clustering through q-fold cross-validation
Abstract
References
begin{thebibliography}{}
bibitem[Anderson et~al., 2006]{Anderson2006}
Anderson, B.~J., Gross, D.~S., Musicant, D.~R., Ritz, A.~M., Smith, T.~G., and
Steinberg, L.~E. (2006).
newblock Adapting k-medians to generate normalized cluster centers.
newblock In {em Proceedings of the 2006 SIAM International Conference on Data
Mining}, pages 165--175. SIAM.
bibitem[Arbin et~al., 2015]{Arbin2016}
Arbin, N., Suhaimi, N.~S., Mokhtar, N.~Z., and Othman, Z. (2015).
newblock {Comparative analysis between k-means and k-medoids for statistical
clustering}.
newblock {em Proceedings - AIMS 2015, 3rd International Conference on
Artificial Intelligence, Modelling and Simulation}, pages 117--121.
bibitem[Ben-David et~al., 2006]{Ben-David2006}
Ben-David, S., Luxburg, U., and Pál, D. (2006).
newblock A sober look at clustering stability.
newblock {em Learning Theory}.
bibitem[Ben-david et~al., 2007]{Ben-david2007}
Ben-david, S., Pál, D., and Simon, H.~U. (2007).
newblock Stability of k-means clustering.
newblock In {em Proceedings of the 20th Annual Conference on Learning
Theory}.
bibitem[Bezdek and Pal, 1998]{Bezdek1998}
Bezdek, J.~C. and Pal, N.~R. (1998).
newblock Some new indexes of cluster validity.
newblock {em Part B (Cybernetics) IEEE Transactions on Systems, Man, and
Cybernetics}, 28(3):301--315.
bibitem[Bubeck et~al., 2009]{Bubeck2009}
Bubeck, S., Meila, M., and von Luxburg, U. (2009).
newblock How the initialization affects the stability of the k-means
algorithm.
newblock {em arXiv preprint arXiv:0907.5494}.
bibitem[Celebi et~al., 2013]{Celebi2013}
Celebi, M.~E., Kingravi, H.~A., and Vela, P.~A. (2013).
newblock A comparative study of efficient initialization methods for the
k-means clustering algorithm.
newblock {em Expert Systems with Applications}, 40:200--210.
bibitem[de~Assis and de~Souza, 2011]{Assis2011}
de~Assis, E.~C. and de~Souza, R.~M. (2011).
newblock A k-medoids clustering algorithm for mixed feature-type symbolic
data.
newblock In {em Systems, Man, and Cybernetics (SMC), 2011 IEEE International
Conference on}, pages 527--531. IEEE.
bibitem[Dheeru and Karra~Taniskidou, 2017]{Dheeru2017}
Dheeru, D. and Karra~Taniskidou, E. (2017).
newblock {UCI} machine learning repository.
bibitem[Dresen et~al., 2008]{Dresen2008}
Dresen, I. M.~G., Boes, T., Huesing, J., Neuhaeuser, M., and Joeckel, K.-H.
(2008).
newblock New resampling method for evaluating stability of clusters.
newblock {em BMC bioinformatics}, 9(1):42.
bibitem[Dudoit and Fridlyand, 2002]{Dudoit2002}
Dudoit, S. and Fridlyand, J. (2002).
newblock A prediction-based resampling method for estimating the number of
clusters in a dataset.
newblock {em Genome biology}, 3(7):research0036--1.
bibitem[Dudoit and Fridlyand, 2003]{Dudoit2003}
Dudoit, S. and Fridlyand, J. (2003).
newblock Bagging to improve the accuracy of a clustering procedure.
newblock {em Bioinformatics}, 19:1090--1099.
bibitem[Fred and Jain, 2002a]{Fred2002a}
Fred, A. and Jain, A.~K. (2002a).
newblock Evidence accumulation clustering based on the k-means algorithm.
newblock In {em Joint IAPR International Workshops on Statistical Techniques
in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR)}, pages 442--451. Springer.
bibitem[Fred and Jain, 2002b]{Fred2002}
Fred, A. L.~N. and Jain, A.~K. (2002b).
newblock Data clustering using evidence accumulation.
newblock In {em Proc. Object recognition supported by user interaction for
service robots}, volume~4, pages 276--280 vol.4.
bibitem[Fred and Jain, 2005]{Fred2005}
Fred, A. L.~N. and Jain, A.~K. (2005).
newblock Combining multiple clusterings using evidence accumulation.
newblock {em IEEE Transactions on Pattern Analysis and Machine Intelligence},
(6):835--850.
bibitem[Goder and Filkov, 2008]{Goder2008}
Goder, A. and Filkov, V. (2008).
newblock Consensus clustering algorithms: Comparison and refinement.
newblock In {em Proceedings of the Meeting on Algorithm Engineering &
Expermiments}, pages 109--117. Society for Industrial and Applied
Mathematics.
bibitem[Guyon et~al., 2009]{Guyon2009}
Guyon, I., Von~Luxburg, U., and Williamson, R.~C. (2009).
newblock Clustering: Science or art.
newblock In {em NIPS 2009 workshop on clustering theory}, pages 1--11.
bibitem[Kiselev et~al., 2016]{Kiselev}
Kiselev, V.~Y., Kirschner, K., Schaub, M.~T., Andrews, T., Yiu, A., Chandra,
T., Natarajan, K.~N., Reik, W., Barahona, M., Green, A.~R., and Hemberg, M.
(2016).
newblock Sc3 - consensus clustering of single-cell rna-seq data.
newblock {em Nature methods}, 14(5):483.
bibitem[Kuncheva and Vetrov, 2006]{Kuncheva2006}
Kuncheva, L.~I. and Vetrov, D.~P. (2006).
newblock Evaluation of stability of k-means cluster ensembles with respect to
random initialization.
newblock {em IEEE Transactions on Pattern Analysis and Machine Intelligence},
(11):1798--1808.
bibitem[Lancichinetti and Fortunato, 2012]{Lancichinetti2012}
Lancichinetti, A. and Fortunato, S. (2012).
newblock Consensus clustering in complex networks.
newblock {em Scientific reports}, 2:336.
bibitem[Liu et~al., 2016]{Liu2016a}
Liu, A., Zou, S., Qiu, T., and Bai, X. (2016).
newblock Research on k-medoids clustering algorithm based on data density and
its parallel processing based on mapreduce.
newblock {em Journal of Residuals Science & Technology}, 13(7):e4015.
bibitem[Lord et~al., 2017]{Lord2017}
Lord, E., Willems, M., Lapointe, F.-J., and Makarenkov, V. (2017).
newblock Using the stability of objects to determine the number of clusters in
datasets.
newblock {em Information Sciences}, 393:29--46.
bibitem[Madhuri et~al., 2014]{Madhuri2014}
Madhuri, R., Murty, M.~R., Murthy, J., Reddy, P.~P., and Satapathy, S.~C.
(2014).
newblock {Cluster analysis on different data sets using k-modes and
k-prototype algorithms}.
newblock In {em ICT and Critical Infrastructure: Proceedings of the 48th
Annual Convention of Computer Society of India}, pages 137--144. Springer.
bibitem[Melnykov et~al., 2012]{Melnykov2012}
Melnykov, V., Chen, W.-C., and Maitra, R. (2012).
newblock Mixsim: An r package for simulating data to study performance of
clustering algorithms.
newblock {em Journal of Statistical Software}, 51(12):1.
bibitem[Milligan and Cooper, 1987]{Milligan1987}
Milligan, G.~W. and Cooper, M.~C. (1987).
newblock Methodology review: Clustering methods.
newblock {em Applied Psychological Measurement}, 11:329--354.
bibitem[Minaei-Bidgoli et~al., 2004]{Minaei-Bidgoli2004}
Minaei-Bidgoli, B., Topchy, A., and Punch, W.~F. (2004).
newblock Ensembles of partitions via data resampling.
newblock In {em Proc. ITCC 2004. Int. Conf. Information Technology: Coding
and Computing}, volume~2, pages 188--192 Vol.2.
bibitem[Monti, 2003]{Monti2003}
Monti, S. (2003).
newblock Consensus clustering: a resampling-based method for class discovery
and visualization of gene expression microarray data.
newblock {em Machine Learning}, 52(1/2):91--118.
bibitem[Nguyen and Caruana, 2007]{Nguyen2007}
Nguyen, N. and Caruana, R. (2007).
newblock Consensus clusterings.
newblock In {em Proc. Seventh IEEE Int. Conf. Data Mining (ICDM 2007)}, pages
--612.
bibitem[Novoselova and Tom, 2012]{Novoselova2012}
Novoselova, N. and Tom, I. (2012).
newblock Entropy-based cluster validation and estimation of the number of
clusters in gene expression data.
newblock {em Journal of bioinformatics and computational biology},
(5):1250011.
bibitem[Park and Jun, 2009]{Park2009a}
Park, H.~S. and Jun, C.~H. (2009).
newblock {A simple and fast algorithm for K-medoids clustering}.
newblock {em Expert Systems with Applications}, 36:3336--3341.
bibitem[Raykov et~al., 2016]{Raykov2016}
Raykov, Y.~P., Boukouvalas, A., Baig, F., and Little, M.~A. (2016).
newblock What to do when k-means clustering fails: a simple yet principled
alternative algorithm.
newblock {em PLoS ONE}, 11(9):e0162259.
bibitem[Rend{'o}n et~al., 2011]{Rendon2011}
Rend{'o}n, E., Abundez, I., Arizmendi, A., and Quiroz, E.~M. (2011).
newblock Internal versus external cluster validation indexes.
newblock {em International Journal of computers and communications},
(1):27--34.
bibitem[Risso et~al., 2018]{Risso2018}
Risso, D., Purvis, L., Fletcher, R., Das, D., Ngai, J., Dudoit, S., and Purdom,
E. (2018).
newblock clusterexperiment and rsec: A bioconductor package and framework for
clustering of single-cell and other large gene expression datasets.
newblock {em bioRxiv}, page 280545.
bibitem[Rousseeuw, 1987]{Rousseeuw1987}
Rousseeuw, P.~J. (1987).
newblock Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis.
newblock {em Journal of computational and applied mathematics}, 20:53--65.
bibitem[Saeed et~al., 2012]{Saeed2012}
Saeed, F., Salim, N., and Abdo, A. (2012).
newblock Voting-based consensus clustering for combining multiple clusterings
of chemical structures.
newblock {em Journal of Cheminformatics}, 4(1):1.
bibitem[Saeed et~al., 2013]{Saeed2013c}
Saeed, F., Salim, N., and Abdo, A. (2013).
newblock Consensus methods for combining multiple clusterings of chemical
structures.
newblock {em Journal of Chemical Information and Modeling}, 53(5):1026--1034.
bibitem[Topchy et~al., 2004]{Topchy2004a}
Topchy, A., Jain, A.~K., and Punch, W. (2004).
newblock A mixture model for clustering ensembles.
newblock In {em Proceedings of the 2004 SIAM international conference on data
mining}, pages 379--390. SIAM.
bibitem[Topchy et~al., 2005]{Topchy2005}
Topchy, A., Jain, A.~K., and Punch, W. (2005).
newblock Clustering ensembles: Models of consensus and weak partitions.
newblock {em IEEE transactions on pattern analysis and machine intelligence},
(12):1866--1881.
bibitem[Vega-Pons and Ruiz-Shulcloper, 2011]{Vega-Pons2011}
Vega-Pons, S. and Ruiz-Shulcloper, J. (2011).
newblock {A survey of clustering ensemble algorithms}.
newblock {em International Journal of Pattern Recognition and Artificial
Intelligence}, 25(03):337--372.
bibitem[von Luxburg, 2010]{Luxburg2010}
von Luxburg, U. (2010).
newblock Clustering stability: An overview.
newblock {em Foundations and Trends in Machine Learning}, 2(3):235--274.
bibitem[Wang, 2010]{Wang2010}
Wang, J. (2010).
newblock Consistent selection of the number of clusters via crossvalidation.
newblock {em Biometrika}, 97(4):893--904.
bibitem[Xie et~al., 2011]{Xie2011}
Xie, J., Jiang, S., Xie, W., and Gao, X. (2011).
newblock {An efficient global K-means clustering algorithm}.
newblock {em Journal of Computers}, 6(2):271--279.
bibitem[Yang, 2016]{Yang2016}
Yang, Y. (2016).
newblock {em Temporal Data Mining Via Unsupervised Ensemble Learning}.
newblock Elsevier.
bibitem[Zhong et~al., 2017]{ZHONG2017}
Zhong, X., Yu, T., and Xia, H. (2017).
newblock A new partition-based clustering algorithm for mixed data.
newblock In {em Proceedings of the International MultiConference of Engineers
and Computer Scientists}, volume~1.
bibitem[Șenbabao{u{g}}lu et~al., 2014]{Senbabaoglu2014}
Șenbabao{u{g}}lu, Y., Michailidis, G., and Li, J.~Z. (2014).
newblock Critical limitations of consensus clustering in class discovery.
newblock {em Scientific reports}, 4:6207.
end{thebibliography}
Full Text: pdf