A note on depth-based classification of circular data
Abstract
References
Ackermann, H.: A note on circular nonparametrical classication. Biometrical J 5, 577{587 (1997)
Agostinelli, C., Romanazzi, M.: Nonparametric analysis of directional data based on data depth. Environ Ecol Stat 20, 253{270 (2013)
Batschelet, E.: Circular statistics in biology. Academic Press, London, 1981.
Christmann, A., Rousseeuw, P.: Measuring overlap in logistic regression. Comput Statist Data Anal 37, 65{75 (2001)
Christmann, A., Fischer, P., Joachims, T.: Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassications . Comput Statist 17, 273{287 (2002)
Dutta, S. and Ghosh, A. K.: On classication based on Lp depth with an adaptive choice of p. Technical Report No. R5/2011, Statistics and Mathematics Unit. Indian Statistical Institute, Kolkata, India (2011). Available at http://www.isical.ac. in/~statmath/html/publication/l_p_24_02_2011.pdf
El Katthabi, S., Streit, F.: Identication analysis in directional statistics, Comput Statist Data Anal 23, 45{63 (1996)
Ghosh, A.K., Chaudhuri, P.: On maximum depth and related classiers. Scand J Stat 32, 327{350 (2005)
Hartikainen, A., Oja, H.: On some parametric, nonparametric and semiparametric discrimination rules. In Data depth: robust multivariate analysis, computational geometry and applications. Liu, R. Y., Serfing, R., and Souvaine, D. L., eds. 1st edition. New York: AMS, 61{70 (2006)
Hubert, M., Van der Veeken, S.: Robust classication for skewed data. Adv Data Anal Classif 4, 239{254 (2010)
James, G., Witten, D., Hastie, T. and Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer, New York (2013)
Morris, J., Layccock, P.J.: Discriminant analysis of directional data. Biometrika 61, 335{341 (1974)
Jornsten, R.: Clustering and classication based on the L1 data depth. J Multivariate Anal 90, 67{89 (2004)
Li, J., Cuesta-Albertos, J.A., and Liu, R.: DD-Classier: Nonparametric Classification Procedure Based on DD-plot. J Am Statist Assoc 107, 737{753 (2012)
Liu, Z., Modarres, R.: Lens data depth and median. J Nonparametr Statist 23, 1063{1074 (2011)
Liu, R.Y., Singh, K.: Ordering directional data. Concepts of data depth on circles and spheres. Ann Stat 20, 1468{1484 (1992)
Liu, R.Y., Singh, K.: Multivariate analysis by data depth: descriptive statistics, graphics and inference. Ann Stat 27, 783{1117 (1999)
Lopez-Cruz, P., Bielza, C., Larranaga, P.: Directional naive Bayes classiers. Pattern Anal Appl DOI:10.1007/s10044-013-0340-z. Springer, London (2013)
Lopez-Pintado, S. and Romo, J.: Depth-based classication for functional data. DIMACS Ser. Math. Theo. Comput. Sci., (Liu, R., Sering, R. and Souvaine, D. L. ed.) 72, 103{119 (2006)
Mardia, K.V., Jupp, E.P.: Statistics of directional data. Academic Press, London (1972)
Mosler, I., Hoberg, R.: Data analysis and classication with the zonoid depth. In Data depth: robust multivariate analysis, computational geometry and applications. Liu, R. Y., Serfling, R., and Souvaine, D. L., eds. 1st edition. New York: American
Mathematical Society, 49{59 (2006)
Paindaveine, D., Van Bever, G.: Nonparametrically Consistent Depth-Based Classifiers. Paper submitted to the Bernoulli. (2014)
Ruts, I., Rousseeuw, P.: Computing depth contours of bivariate points clouds. Comput Stat Data An 94, 388{402 (1996)
SenGupta, A., Ugwuowo, F.I.: A classication method for directional data with application to the human skull. Commun Stat Theory Methods 40, 457-466 (2011)
Serfling, R.: Depth functions functions in nonparametric multivariate inference.
Data depth: robust multivariate analysis, computational geometry and applications,
(Liu, R., Serfling, R. and Souvaine, D., eds.), 1-16 (2006)
Stoller, D.S.: Univariate two-population distribution-free discrimination. J Am Statist Assoc 49, 770-777 (1954)
Zuo, Y., Serfling, R.: General notions of depth function. Ann Stat 28, 461-482 (2000)
Full Text: pdf