Bivariate Basu-Dhar geometric model for survival data with a cure fraction
Abstract
References
Achcar, J. A., Coelho-Barros, E. A. and Mazucheli, J. (2013). Block and Basu bivariate lifetime distribution in the presence of cure fraction. Journal of Applied Statistics,
(9):1864-1874.
Achcar, J. A., Davarzani, N. and Souza, R. M. (2016). Basu-Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach.
Journal of Applied Statistics, 43(9):1636-1648.
Almalki, S. J. and Nadarajah, S. (2014). A new discrete modified Weibull distribution. IEEE Transactions on Reliability, 63(1):68-80.
Arnold, B. (1975). A characterization of the exponential distribution by multivariate geometric compounding. Sankhya: The Indian Journal of Statistics, Series A,
(1):164-173.
Basu, A. P. and Dhar, S. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2(1):33-44.
Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential extension. Journal of the American Statistical Association, 69(348):1031-1037.
Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological),
(1):15-53.
Brenna, S. M., Silva, I. D., Zeferino, L. C., Pereira, J. S., Martinez, E. Z. and Syrjanen, K. J. (2004). Prognostic value of P53 codon 72 polymorphism in invasive cervical
cancer in Brazil. Gynecologic Oncology, 93(2):374-380.
Davarzani, N., Achcar, J. A., Simirnov, E. N. and Peeters, R. (2015). Bivariate lifetime geometric distribution in presence of cure fraction. Journal of Data Science, 13(4):755-
Dewan, I., Sudheesh, K. K. and Anisha, P. (2016). Proportional hazards model for discrete data: some new developments. Communications in Statistics - Theory and
Methods, 45(21):6481-6493.
Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association, 56(296):971-977.
Geisser, S. and Eddy, W. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74(365):153-160.
Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2):173-188.
Hawkes, A. G. (1972). A bivariate exponential distribution with applications to reliability. Journal of the Royal Statistical Society. Series B (Methodological), 34(1):129-131.
Henningsen, A. and Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3):443-458.
Herzog, W., Schellberg, D. and Deter, H. C. (1997). First recovery in anorexia nervosa patients in the long-term course: a discrete-time survival analysis. Journal of
Consulting and Clinical Psychology, 65(1):169-177.
Huster, W. J., Brookmeyer, R. and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics, 45(1):145-156.
Kulasekera, K. B. and Tonkyn, D. W. (1992). A new discrete distribution, with applications to survival, dispersal and dispersion. Communications in Statistics-Simulation
and Computation, 21(2):499-518.
Lambert, P. C., Thompson, J. R., Weston, C. L. and Dickman, P. W. (2007). Estimating and modeling the cure fraction in population-based cancer survival analysis.
Biostatistics, 8(3):576-594.
Marshall, A. W. and Olkin, I. (1967). A generalized bivariate exponential distribution. Journal of Applied Probability, 4(2):291-302.
Martinez, E. Z. and Achcar J. A. (2014). Bayesian bivariate generalized Lindley model for survival data with a cure fraction. Computer Methods and Programs in Biomedicine 117(2):145-157.
Martinez, E. Z., Achcar, J. A., Jacome, A. A. and Santos, J. S. (2013). Mixture and non-mixture cure fraction models based on the generalized modied Weibull distribution
with an application to gastric cancer data. Computer Methods and Programs in Biomedicine, 112(3):343-355.
Nakagawa, T. and Osaki, S. (1975). The discrete Weibull distribution. IEEE Transactions on Reliability, 24(5):300-301.
Roy, D. (2004) Discrete Rayleigh distribution. IEEE Transactions on Reliability, 53(2):255-260.
Sarkar, S. K. (1987) A continuous bivariate exponential distribution. Journal of the American Statistical Association, 82(398):667-675.
Scheike, T. H. and Jensen, T. K. (1997). A discrete survival model with random effects: an application to time to pregnancy. Biometrics, 53(1):318-329.
Singer, J. D. and Willett, J. B. (1993). It's about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational and
Behavioral Statistics, 18(2):155-195.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2014). The deviance information criterion: 12 years on (with discussion). Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(3):485-493.
Full Text: pdf