The relationship between CUB and loglinear models with latent variables


Abstract


The “combination of uniform and shifted binomial” (CUB) model is a dis- tribution for ordinal variables that has received considerable recent attention and specialized development. This article notes that the CUB model is a special case of the well-known loglinear latent class model, an observation that is useful for two reasons. First, we show how it can be used to estimate the cub model in familiar standard software such as Mplus or Latent gold. Second, the mathematical equivalence of CUB with this well-known model and its correspondingly long history allows well-known results to be applied straightforwardly, subsuming a wide range of specialized recent developments of CUB and suggesting several possibly useful future ones. Thus, the observation that CUB and its extensions are restricted loglinear latent class models should be useful to both applied practitioners and methodologists.


DOI Code: 10.1285/i20705948v8n3p374

Keywords: CUB models; finite mixture; latent class; ordinal data

References


Agresti, A. (2002). Categorical data analysis, 2nd ed. Wiley-Interscience, New York. Andreis, F. and Ferrari, P. (2013). On a copula model with cub margins. Quaderni di

Statistica, 15.

Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural equation

modeling, 12(3):411–434.

Corduas, M. (2011). Modelling correlated bivariate ordinal data with cub marginals.

Quaderni di statistica, 13(13).

Dayton, C. and Macready, G. (1988). Concomitant-variable latent-class models. Journal

of the American Statistical Association, 83(401):173–178.

D’Elia, A. and Piccolo, D. (2005). A mixture model for preferences data analysis.

Computational Statistics & Data Analysis, 49(3):917–934.

Di Iorio, F. and Iannario, M. (2012). Residual diagnostics for interpreting cub models.

Statistica, 72(2):163–172.

Gambacorta, R., Iannario, M., and Valliant, R. (2014). Design-based inference in a mixture model for ordinal variables for a two stage stratified design. Australian & New Zealand Journal of Statistics, 56(2):125–143.

Grilli, L., Iannario, M., Piccolo, D., and Rampichini, C. (2014). Latent class CUB models. Advances in Data Analysis and Classification, 8(1):105–119.

Hagenaars, J. A. (1990). Categorical longitudinal data: Log-linear panel, trend, and cohort analysis. Sage, Newbury Park.

Hagenaars, J. A. P. (1988). Latent structure models with direct effects between indica- tors: Local dependence models. Sociological Methods & Research, 16(3):379–405.

Huang, G. and Bandeen-Roche, K. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika, 69(1):5– 32.

Iannario, M. (2008). A class of models for ordinal variables with covariates effects. Quaderni di Statistica, 10:53–72.

Iannario, M. (2009). Fitting measures for ordinal data models. Quaderni di Statistica, 11:39–72.

Iannario, M. (2010). On the identifiability of a mixture model for ordinal data. Metron, 68(1):87–94.

Iannario, M. (2012a). Hierarchical CUB models for ordinal variables. Communications in Statistics-Theory and Methods, 41(16-17):3110–3125.

Oberski, Vermunt

Iannario, M. (2012b). Modelling shelter choices in a class of mixture models for ordinal

responses. Statistical Methods & Applications, 21(1):1–22.

Iannario, M. (2013). A finite mixture distribution for modelling overdispersion. In

Advances in Latent Variables-Methods, Models and Applications.

Iannario, M. (2014). Modelling uncertainty and overdispersion in ordinal data. Com-

munications in Statistics-Theory and Methods, 43(4):771–786.

Manisera, M. and Zuccolotto, P. (2014). Modeling rating data with nonlinear cub models.

Computational Statistics & Data Analysis, 78:100–118.

Maydeu-Olivares, A. and Joe, H. (2005). Limited-and full-information estimation and goodness-of-fit testing in 2n contingency tables. Journal of the American Statistical Association, 100(471):1009–1020.

Muth ́en, L. K. and Muth ́en, B. (2012). Mplus User’s Guide, Seventh Edition. Muth ́en & Muth ́en, Los Angeles, CA.

Oberski, D. (frth). The latent class MTMM model. Psychological Methods.

Oberski, D., Van Kollenburg, G., and Vermunt, J. (2013). A Monte Carlo evaluation of three methods to detect local dependence in binary data latent class models. Advances in Data Analysis and Classification, 7(3).

Oberski, D. and Vermunt, J. (2013). A model-based approach to goodness-of-fit evalua- tion in item response theory. Measurement: Interdisciplinary Research & Perspectives, 11:117–122.

Oberski, D. and Vermunt, J. (2014). The Expected Parameter Change (EPC) for local dependence assessment in binary data latent class models. Accepted for publication in Psychometrika.

Oberski, D., Vermunt, J., and Moors, G. (frth). Evaluating measurement invariance in categorical data latent variable models with the EPC-interest.

Patterson, B. H., Dayton, C. M., and Graubard, B. I. (2002). Latent class analysis of complex sample survey data: application to dietary data. Journal of the American Statistical Association, 97(459):721–741.

Piccolo, D. (2003). On the moments of a mixture of uniform and shifted binomial random variables. Quaderni di Statistica, 5:85–104.

Piccolo, D. (2006). Observed information matrix for mub models. Quaderni di Statistica, 8:33–78.

Skinner, C., Holt, D., and Smith, T. (1989). Analysis of Complex Surveys. John Wiley & Sons, New York.

Tutz, G., Schneider, M., Iannario, M., and Piccolo, D. (2014). Mixture models for ordinal responses to account for uncertainty of choice.

Vermunt, J. and Magidson, J. (2013a). LG-Syntax User’s Guide: Manual for Latent GOLD 5.0 Syntax Module. Statistical Innovations Inc., Belmont, MA.

Vermunt, J. K. and Magidson, J. (2013b). Technical guide for Latent GOLD 5.0: Basic, Advanced, and Syntax. Statistical Innovations Inc., Belmont, MA.


Full Text: pdf


Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.