Estimating and Updating a Linear Discriminant Function from the Mixture of Two One-Parameter Lindley Distributions


Abstract


In this paper, we introduce the mixture model of two one-parameterLindley distributions through the mathematical formula of theprobability density and cumulative distribution functions of theunderlying mixture model. Then, we find out the maximum-likelihoodestimates of the parameters of the mixture of two one-parameterLindley distributions by using two types of data namely; classifiedand unclassified samples. Next, we estimate the linear discriminantfunction of the underlying mixture model and calculate the totalprobabilities of misclassification as well as the percentage biasthrough a series of simulation experiments and some real data sets.Consequently, we study the problem of updating the discriminantfunction on the basis of data of unknown origin. We consider theupdating procedure for the linear discriminant function on the basisof two one-parameter Lindley distributions in situations when theadditional observations are mixed or classified. Finally, we studythe performance of the updating procedures through some simulationexperiments by means of the relative efficiencies.

DOI Code: 10.1285/i20705948v15n2p318

Keywords: finite mixtures; discriminant function; classified and unclassified observations; relative efficiency

References


Al-Moisheer, A. S., Daghestani, A. F. and Sultan, K. S. (2021). Mixture of Lindley and Inverse Weibull Distributions: Properties and Estimation. WSEAS TRANACTIONS on MATHEMATICS, 20:14, 134-143.

Al-Moisheer, A. S., Daghestani, A. F. and Sultan, K. S. (2021). Mixture of Two One-Parameter Lindley Distributions: Properties and Estimation. Journal of Statistical Theory and Practice, 15:11, 1-21.

Al-Moisheer, A. S. and Sultan, K. S. (2016). Estimation of a discriminant function from a mixture of two Burr Type III distributions, Communications in Statistics - Simulation and Computation, 45, 3760-3775.

Al-Moisheer, A. S. (2021). Mixture of Lindley and Lognormal Distributions: Properties, Estimation and Application. Journal of function spaces, accepted for publication.

Al-Moisheer, A. S. (2016). Updating a nonlinear discriminant function estimated from a mixture of two Burr Type III distributions, Journal of Applied Statistics, 44, 2685-2696.

Amoh, R. K. and Kocherlakota, K. (1991). Updating discriminant functions estimated from inverse Gaussian populations, Communications in Statistics - Simulation and Computation, 20, 619-637.

Choi, K. (1969). Empirical Bayes procedure for (pattern) classification with stochastic learning, Ann. Inst. Statist. Math, 21, 117-125.

Daghestani, A. F., Sultan, K. S. and Al-Moisheer, A. S. (2021). Mixture of Lindley and Weibull Distributions: Properties and Estimation. Journal of Statistics Applications & Probability, 10:2, 301-314.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001). Pattern Classification, John Wiley & Sons, New York.

Everitt, B. S. and Hand, D. J. (1981). Finite Mixture Distribution, Chapman & Hall, London.

Fukunaga, K. and Kessell, D. (1973). Non parametric Bayes error estimation using unclassified samples, IEEE Transactions on Information Theory, 19, 434-440.

Ganesalingam, S. and McLachlan, G. J. (1978). The efficiency of a linear discriminant function based on unclassified initial samples, Biometrika, 65(3), 658-662.

Ganesalingam, S. and McLachlan, G. J. (1979). Small sample results for a linear discriminant function estimated from a mixture of normal populations, Journal of Statistical Computation and Simulation, 9, 151-158.

Ganesalingam, S. and McLachlan, G. J. (1981). Some efficiency results for the estimation of the mixing proportion in a mixture of two normal distributions, Biometrika, 37, 23-33.

Ghitany, M. E., Atieh, B. and Nadarajah, S. (2008). Lindley distribution and its applications, Mathematics and Computers in Simulation, 78, 493-506.

Lindley, D. V. (1958). Fiducial distribution and Bayes’ theorem, Journal of the Royal Statistical Society, 20, 102-107.

Lindsay, B. G. (1995). Mixture Models: Theory, Geometry, and Applications, The Institute of Mathematical Statistics, Hayward, California.

McLachlan, G. J. (1975). Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation, Journal of the American Statistical Assosiation, 70, 365-369.

McLachlan, G. J. (1977). Estimating the linear discriminant function from initial samples containing a small number of unclassified observations, Journal of the American Statistical Assosiation, 72, 403-406.

McLachlan, G. J. and Basford, K. (1988). Mixture Models: Inference and Applications to Clustering, Marcel Dekker, New York.

McLachlan, G. J. and Ganesalingam, S. (1982). Updating a discriminant function on the basis of unclassified data, Communications in Statistics – Simulation and Computation, 11(6), 753-767.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, John Wiley & Sons, New York.

McLachlan, G. J. (2004). Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, New York.

Murray, G. J. and Titterington, D. M. (1978). Estimation problem with data from mixture, Journal of the Royal Statistical Society. Series C, 27, 325-334.

Okamoto, M. (1963). An asymptotic expansion for the distribution of the linear discriminant function, The Annals of Mathematical Statistics, 34 (4), 1286-1301.

Razali, A. M. and Salih, A. A. (2009). Combining two Weibull distributions using a mixing parameter, European Journal of Scientific Research, 31(2), 296-305.

Sultan, K. S. and Al-Moisheer, A. S. (2013). Estimation of a discriminant function from a mixture of two inverse Weibull distributions, Journal of Statistical Computation and Simulation, 83(3), 405-416.

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finitee Mixture Distribution, John Wiley & Sons, Chichester.

Torabi, H., Falahati-Naeini, N. and Montazeri, N. H. (2014). An extended generalized Lindley distribution and its applications to lifetime data, Statistical Research and Training Center, 11, 203-222.


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.