Comparison of regression models under multi-collinearity
Abstract
References
Hoerl, A. E., & Kennard, R. W. (2000). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 42(1), 80-86.
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1), 69-82.
Brownlee, K. A. (1965). Statistical theory and methodology in science and engineering (Vol. 150, pp. 120-131). New York: Wiley.
Chandrasekhar, C. K., Bagyalakshmi, H., Srinivasan, M. R., & Gallo, M. (2016). Partial ridge regression under multicollinearity. Journal of Applied Statistics, 43(13), 2462-2473.
Dorugade, A. V. (2014). New ridge parameters for ridge regression. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 94-99.
Draper, N. R., & Smith, H. (2014). Applied regression analysis. John Wiley & Sons.
Kibria, B. G. (2003). Performance of some new ridge regression estimators. Communications in Statistics-Simulation and Computation, 32(2), 419-435.
Guilkey, D. K., & Murphy, J. L. (1975). Directed ridge regression techniques in cases of multicollinearity. Journal of the American Statistical Association, 70(352), 769-775.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2015). Introduction to linear regression analysis. John Wiley & Sons.
Newhouse, J. P., & Oman, S. D. (1971). An Evaluation of Ridge Estimators: A Report Prepared for United States Air Force Project Rand. Rand.
R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Full Text: pdf