### The Gamma log-logistic Weibull distribution: model, properties and application

#### Abstract

#### References

Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P. (1983). Graphical Methods of Data Analysis. Chapman and Hall.

Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27:154-161.

Chen, R. and Amin, N. A. K. (1983). Estimating parameters in a continuous distribution with a shifted origin. Journal of Royal Statistical Society B, 45(3):394-403.

Gradshteyn, I. and Ryzhik, I. M. (2000). Table of Integrals, Series and Products. Academic Press, San Diego.

Huang, S. and Oluyede, B. (2014). Exponentiated kumaraswamy-dagum distribution with applications to income and lifetime data. Journal of Statistical Distributions and Applications, 1(8).

Oluyede, B., Foya, S., Warahena-Liyanage, G., and Huang, S. (2016). The log-logistic weibull distribution with applications to lifetime data. Austrian Journal of Statistics, 45:43-69.

Oluyede, B., Huang, S., and Pararai, M. (2014). A new class of generalized dagum distribution with applications to income and lifetime data. Journal of Statistical and Econometric Methods, 3(2):125-151.

Oluyede, B. O. (1999). On inequalities and selection of experiments for length biased distributrions. Probability in the Engineering and Informational Sciences, 13(2):129-149.

Percontini, A., Blas, B., and Cordeiro, G. (2013). The beta weibull poisson distribution. Chilean Journal of Statistics, 4(2):3-26.

Pinho, L., Cordeiro, G., and Nobre, J. S. (2012). The gamma exponentiated weibull distribution. Journal of Statistical Theory and Applications, 11(4):379-395.

Renyi, A. (1960). On measures of entropy and information. volume 1, pages 547-561.

Ristic, M. and Balakrishnan, N. (2012). The gamma exponentiated exponential distributions. Journal of Statistical Computation and Simulation, 82(8):1191-1206.

Santos Silva, J. M. and Tenreyro, S. (2010). On the existence of maximum likelihood estimates in poisson regression. Econ. Lett., 107:310-312.

Seregin, A. (2010). Uniqueness of the maximum likelihood estimator for k-monotone densities. Proc. Amer. Math. Soc, 138:4511-4515.

Shaked, M. and Shanthikumar, J. (1994). Stochastic Orders and Their Applications. New York, Academic Press.

Silva, G., Ortega, E. M., and Cordeiro, G. (2010). The beta modied weibull distribution. Lifetime Data Analysis, 16:409-430.

Smith, R. L. and Naylor, J. (1987). A comparison of maximum likelihood and bayesian estimators for the three-parameter weibull distribution. Applied Statistics, pages 358-369.

Team, R. D. C. (2011). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Xia, J., Mi, J., and Zhou, Y. Y. (2009). On the existence and uniqueness of the maximum likelihood estimators of normal and log-normal population parameters with grouped data. J. Probab. Statist, Article id 310575:16 pages.

Zhou, C. (2009). Existence and consistency of the maximum likelihood estimator for the extreme index. J. Multivariate Analysis, 100:794-815.

Zografos, K. and Balakrishnan, N. (2009). On families of beta and generalized gamma generated distribution and associated inference. Stat. Method., 6:344-362.

Full Text: pdf