Estimation of Postmortem Period by Means of Artificial Neural Networks
Abstract
The issue of estimating the postmortem period has always been a serious problem. Current methods do not provide satisfactory solutions. The problem is highly nonlinear and the variables involved are many and various.
In this work we aim to propose a new method for estimating the postmortem period. This method is based on artificial neural networks. We use Multilayer Feedforward Networks. Learning takes place in supervised mode. We give a comparative study on a sample of 257 individuals to prove the advantage brought by this new technique, improving in this way the precision of the estimates given by the traditional methods.
References
Naumenko VG. (1984 Apr-Jun); Current state and perspectives of the solution of the problem of determining the time of death. Sud Med Ekspert.; 27(2):9-12. [PubMed: 6464093]
Pigolkin IuI, Bogomolov DV, Korovin AA. (1999 May-Jun); The current methods for determining the time of death. Sud Med Ekspert. 42(3):31-3. [PubMed: 10396964]
Kaliszan M, Hauser R, Kernbach-Wighton G., (2009 May); Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med (Tokyo).11(3):111-7. [PubMed: 19200767]
Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJ. (2011 Dec); Forensic entomology: applications and limitations. Forensic Sci Med Pathol. 7(4):379-92. [PubMed: 10396964]
Amendt J, Krettek R, Zehner R. (2004 Feb) Forensic entomology. Naturwissenschaften. 91(2):51-65. [PubMed: 14991142]
Açikgöz HN. (2010); Forensic entomology. Turkiye Parazitol Derg.34(3):216-21. [PubMed: 20954127]
Jashnani KD, Kale SA, Rupani AB. (2010 Nov); Vitreous humor: biochemical constituents in estimation of postmortem interval. J Forensic Sci.;55(6):1523-7. [PubMed: 20666922].
Lin X, Yin YS, Ji Q. (2011 Feb); Progress on DNA quantification in estimation of postmortem interval. Fa Yi Xue Za Zhi.;27(1):47-9, 53. [PubMed: 21542228].
Berent J. (2005 Jul-Sep); Determining the post mortem interval based on temperature measurements. Part I: From the first 19th century studies to Marshall & Hoare's double exponential model. Arch Med Sadowej Kryminol. 55(3):209-14. [PubMed: 16320770].
Berent J. (2006 Apr-Jun); Determining post mortem interval by temperature data. Part II:research results from the 1970s to the end of the 20th century. Arch Med Sadowej Kryminol. 56(2):103-9. [PubMed: 16970082]
Knight B. (1988 Jan); The evolution of methods for estimating the time of death from body temperature. Forensic Sci Int. 36(1-2):47-55. [PubMed: 3276584].
Verica P, Janeska B, Gutevska A, Duma A. (2007 Oct); Post mortem cooling of the body and estimation of time since death. Soud Lek. 52(4):50-6. [PubMed: 18189070].
C. Henssge, B. Knight, T. Krompecher, B. Madea, L. Nokes (2002); The estimation of the time since death in the early postmortem period, 2nd edn, Arnold Publishers, London.
Henssge C, Brinkmann B. (1984 Sep-Oct); Determination of time of death by rectal temperature. Mathematical analysis of empirical material versus thermodynamic modeling. A critical case presentation. Arch Kriminol. 174(3-4):96-112. [PubMed: 6508475].
Green MA, Wright JC. (1985 May); The theoretical aspects of the time dependent Z equation as a means of postmortem interval estimation using body temperature data only. Forensic Sci Int.;28(1):53-62. [PubMed: 4018682].
Nelson EL. (2000 Mar); Estimation of short-term postmortem interval utilizing core body temperature: a new algorithm. Forensic Sci Int. 13;109(1):31-8. [PubMed: 10759069].
Al-Alousi LM, Anderson RA, Worster DM, Land DV. (2002 Feb); Factors influencing the precision of estimating the postmortem interval using the triple-exponential formulae (TEF). Part II. A study of the effect of body temperature at the moment of death on the postmortem brain, liver and rectal cooling in 117 forensic cases.Forensic Sci Int. 18;125(2-3):231-6. [PubMed: 11909669].
Al-Alousi LM. (2002 Feb); A study of the shape of the post-mortem cooling curve in 117 forensic cases. Forensic Sci Int. 18;125(2-3):237-44. [PubMed: 11909670].
Kil'diushov EM, Kil'diushov MS. (2002 Sep-Oct); Determination of the time of death according to rectal thermometry data using computer calculations. Sud Med Ekspert. 45(5):3-5. [PubMed: 12516265].
den Hartog EA, Lotens WA. (2004 Sep); Postmortem time estimation using body temperature and a finite-element computer model. Eur J Appl Physiol. 92(6):734-7. [PubMed: 15185081].
Vavilov AIu, Viter VI. (2007 Sep-Oct); Using some modern mathematical models of postmortem cooling of the human body for the time of death determination. Sud Med Ekspert. 50(5):9-12. [PubMed: 18050683].
Viter VI, Vavilov AIu. (2008 Jan-Feb); State-of-the-art of mathematical modeling of postmortal thermodynamics for the time of death determination. Sud Med Ekspert. 51(1):15-8. [PubMed: 18326239].
Muñoz Barús JI, Febrero-Bande M, Cadarso-Suárez C. (2008 Oct); Flexible regression models for estimating postmortem interval (PMI) in forensic medicine. Stat Med. 30. 27(24):5026-38. [PubMed: 8618426].
Biermann FM, Potente S. (2011 Jul); The deployment of conditional probability distributions for death time estimation. Forensic Sci Int. 15. 210(1-3):82-6. [PubMed: 21377303].
Robert A. Dunne, (2007); A Statistical Approach to Neural Networks for Pattern Recognition; Wiley-Interscience, Hoboken, New Jersey.
Simon Haykin, (1999); Neural Networks, a comprehensive foundation, 2e edition, Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Christopher M. Bishop, (1995); Neural Networks for Pattern Recognition; Clarendon Press, Oxford.
Christopher M. Bishop, (2006); Pattern Recognition and machine Learning, Springer Science + Business Media, LLC, Singapore.
G.Dreyfus, J.-M. Martinez, M.Samuelides, M.B. Gordon, F. Badran, S.Thiria, L. Hérault, (2002); Réseaux de neurones : Méthodologie et applications, Editions Eyrolles, Paris.
Hornik K. Stinchcombe M., White H. (1989); Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359-366.
Hornik K. Stinchcombe M., White H. (1990); Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks, 3, 551-560.
Hornik K. (1991); Approximations capabilities of multilayer feedforward networks, Neural Networks, 4, pp 251-257.
Terrence L. Fine (1999); Feedforward Neural Network Methodology, Springer–Verlag, New York.
Hagan, M.T., and M. Menhaj (1994); "Training feed-forward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, 5(6), 989-993.
Friedlander, E., Estimating the Time of Death, available via URL www.pathguy.com/TimeDead.htm
Schweitzer, W., Estimation of time of death, Method of Henssge, available via URL www.swisswuff.ch/calculators/todeszeit.php
Smart JL, Kaliszan M. (2012 Mar); The post mortem temperature plateau and its role in the estimation of time of death. A review. Leg Med (Tokyo).
Full Text: pdf