Testing the difference between two sets of data using comparison two linear regression functions
Abstract
References
. Brame, R., Paternoster, R., Mazerolle, P., Piquero, A. (1998). Testing for the Equality of
Maximum-Likelihood Regression Coefficients Between Two Independent Equations. Journal of Quantitative Criminology, 14, 245 – 261.
. Clogg, C.C., Petkova, E., Haritou, A. (1995). Statistical methods for comparing
regression coefficients between models. Sociol, 100, 1261 – 1293.
. Pardo – Fernandez , J.C. (2007). Comparison of Error Distributions in Nonparametric
Regression. Statistics &Probability, 77, 350 – 356.
. Pardo – Fernandez, J.C., Keilegom, I.V., Gonzalez – Manteiga, W. (2007). Testing for
the equality of k regression curves. Statistica Sinica, 17, 1115 – 1137.
. Neumeyer, N., Dette, H. (2003). Nonparametric Comparison of Regression Curves: An
Empirical Process Approach. The Annals of Statistics, 31, 880 – 920.
. Akritas, M.G., Keilegom, I.V. (2001). Non - Parametric Estimation of the Residual
Distribution. Scand. J. Statist, 28,549 – 567.
. Donsker, M.D. (1952). Justification and extension of Doob’s heuristic approach to
the kolmogorov-Smirnov theorems. Annals of Mathematical Statistics, 23, 277 – 281.
. Freedman, D.A. (1981). Bootstrapping regression models. Ann. Statist, 9,1218 – 1288.
. Silverman, B.W., Wellner, J.A. (1996). The bootstrap: To smooth or not to smooth?.
Biometrika, 74, 469 – 479.
. National Statistical Officer Thailand (2009). This is a sample. http://www.
nso.go.th/nso/nsopublish/download/files /ictDev53.pdf.
Full Text: pdf