Heteroscedasticity in survey data and model selection based on weighted Schwarz bayesian information criteria
Abstract
References
.Andrew Barron, Lucien Birg´e, and Pascal Massart (1999) Risk bounds for model selection via penalization. Probab. Theory Related Fields, 113(3):301–413.
.Boris T. Polyak and A. B. Tsybakov (1990) Asymptotic optimality of the Cp-test in the projection estimation of a regression. Teor. Veroyatnost. i Primenen., 35(2):305–317.
.Colin L. Mallows (1973) Some comments on Cp. Technometrics, 15:661–675.
.Hirotugu Akaike(1970) Statistical predictor identification. Ann. Inst. Statist. Math., 22:203–217.
.Hirotugu Akaike(1973) Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971), pages 267–281.
.Ker-Chau Li (1987) Asymptotic optimality for Cp, CL, cross-validation and generalized crossvalidation: discrete index set. Ann. Statist., 15(3):958–975.
.Lucien Birg´e and Pascal Massart (2007) Minimal penalties for Gaussian model selection. Probab. Theory Related Fields, 138(1-2):33–73.
.Myers, R. H,Montgomery, D,C. (1997),“A Tutorial on Generalized Linear Models”, Journal of Quality Technology 29, 274-291.
.Ritei Shibata (1981) An optimal selection of regression variables. Biometrika, 68(1):45–54.
.Sylvain Arlot (2009). Model selection by resampling penalization. Electron. J. Stat., 3:557–624.
.Xavier Gendre (2008) Simultaneous estimation of the mean and the variance in heteroscedastic Gaussian regression. Electron. J. Stat., 2:1345–1372.
.Yannick Baraud (2000) Model selection for regression on a fixed design. Probab. Theory Related Fields, 117(4):467–493.
.Yannick Baraud (2002) Model selection for regression on a random design. ESAIM Probab. Statist., 6:127–146 (electronic).
Full Text: pdf