Bootstrap confidence regions in non-symmetrical correspondence analysis


Non-symmetric Correspondence analysis is a method increasingly used in place of classical correspondence analysis to portray the asymmetric association of two categorical variables. In this paper we investigate the reliability of graphical displays illustrating variable prediction, by looking at inferential aspects of  the sampling variation of the configuration of points, using a bootstrap approach.

DOI Code: 10.1285/i20705948v5n3p413

Keywords: Non-symmetric Correspondence Analysis, Latent Variables, Bootstrap, Elliptical Confidence Regions, Biplot.


Beh, E. J. (2010). Elliptical confidence regions for simple correspondence analysis. Journal of Statistical Planning and Inference, 140, 2582–2588.

Balbi, S. (1992). On Stability in Non Symmetrical Correspondence Analysis Using Bootstrap. Statistica Applicata, 4, 544–552.

D’Ambra, L. and Lauro, N. C. (1989). Non-symmetrical correspondence analysis for three-way contingency tables. In Multiway Data Analysis, eds. R. Coppi, S. Bolasco, Amsterdam: North-Holland, 301–315.

D’Ambra A., Crisci A. (2012). The confidence ellipses in decomposition Multiple Non-Symmetrical Correspondence Analysis. Communications in Statistics. In press.

Gifi, A. (1990). Nonlinear Multivariate Anaysis. Wiley, Chichester.

Goodman, L.A. and Kruskal, W.H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732–764.

Greenacre, M. (1984). Theory and Applications of Correspondence Analysis. Academic Press, London.

Greenacre, M. (2007). Correspondence Analysis in Practice (2nd ed). Chapman & Hall/CRC, London.

Kroonenberg, P. M. and Lombardo, R. (1999). Non-symmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure. Multivariate Behavioral Research, 34, 367–396.

Lebart, L., Morineau, A. and Warwick, K. M. (1984). Multivariate Descriptive Statistical Analysis. New York, Wiley

Lombardo, R., Kroonenberg, P. and D'Ambra, L. (2000). Non-symmetric correspondence analysis: a simple tool in market share distribution. J. of Italian Statist. Society, 9, 107 – 126.

Lombardo, R., Beh, E. J. and D’Ambra, L., 2007. Non-symmetric correspondence analysis with ordinal variables. Computational Statistics and Data Analysis, 52, 566–577.

Lombardo, R. and Meulman, J. (2010). Multiple correspondence analysis via polynomial transformations of ordered categorical variables. Journal of Classification 27, 191–210.

Markus, M.T. (1994). Bootstrap Confidence Regions in Non-Linear Multivariate Analysis. DSWO Press, Leiden.

Ringrose, T. J. (1996). Alternative confidence regions for canonical variate analysis. Biometrika, 83, 575–587.

Ringrose, T. J. (2011). Bootstrap confidence regions for correspondence analysis. Journal of Statistical Computation and Simulation, doi: 10.1080/00949655.2011.579968.

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.