Constructing indicators of unobservable variables from parallel measurements
Abstract
References
.Brentari, E., Golia, S., Manisera, M. (2007). Models for categorical data: a comparison between the Rasch model and Nonlinear Principal Component Analysis. Statistica & Applicazioni, 5, 53-77.
.Carpita, M., Manisera, M. (2011). On the nonlinearity of homogeneous ordinal variables. In New Perspectives in Statistical Modeling and Data Analysis, eds. S. Ingrassia, R. Rocci, M. Vichi, Heidelberg: Springer, 489-496.
.Ferrari, P.A., Barbiero, A. (2012). Nonlinear principal component analysis, in Modern Analysis of Customer Surveys: with applications using R, eds. R.S. Kennett and S. Salini, Chichester: John Wiley, 333-356.
.Ferrari, P.A., Annoni, P., Salini, S. (2005). A comparison between alternative models for environmental ordinal data: Nonlinear PCA vs Rasch Analysis, in Statistical Solutions to Modern Problems: Proceedings of the 20th international Workshop on Statistical Modelling, eds. A.R. Francis, K.M. Matawie, A. Oshlack and G.K. Smyth, Sydney: University of Western Sydney, 173-177.
.Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: John Wiley.
.Heiser, W.J., Meulman, J.J. (1994). Homogeneity analysis: exploring the distribution of variables and their nonlinear relationships, in Correspondence analysis in the social sciences, eds. M. Greenacre and M. Blasius, New York: Academic Press, 179-209.
.Jolliffe, I.T. (2002). Principal component analysis, 2nd Ed. New York: Springer.
.Linting, M., Meulman, J.J., Groenen, P.J.F., Van der Kooij, A. (2007). Stability of Nonlinear Principal Components Analysis: An empirical study using the balanced bootstrap. Psychological Methods, 12, 359-379.
.van Rijckevorsel, J., Bettonvil, B., de Leeuw, J. (1985). Recovery and stability in nonlinear PCA, Dept. Data Theory, Leiden Univ, RR-85-21.
Full Text: PDF