Assessing item contribution on unobservable variables’ measures with hierarchical data
Abstract
References
. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.
. Carpita, M., Golia, S. (2011). Measuring the Quality of Work: The Case of the Italian Social Cooperatives. Quality and Quantity. In press.
. Carpita, M., Manisera, M. (2011). On the Imputation of Missing Data in Surveys with Likert-Type Scales. Journal of Classification, 28, 93–112.
. Gifi, A. (1990). Nonlinear Multivariate Analysis. Chichester: Wiley.
. Manisera, M. (2012). Assessing Stability in NonLinear PCA with Hierarchical Data, in New Perspectives in Statistical Modeling and Data Analysis, eds. P. Giudici, S. Ingrassia, M. Vichi, Heidelberg: Springer, Forthcoming.
. Michailidis, G., de Leeuw, J. (2000). Multilevel Homogeneity Analysis with Differential Weighting. Computational Statistics and Data Analysis, 32, 411–442.
. Vezzoli, M. (2011). Exploring the Facets of Overall Job Satisfaction through a Novel Ensemble Learning. Electronic Journal of Applied Statistical Analysis, 4, 23–38.
. Vezzoli, M., Stone, C.J. (2007). CRAGGING, in Book of Short Papers CLADAG 2007. EUM, University of Macerata, 12 – 14 September 2007, 363–366.
. Vezzoli, M., Zuccolotto, P. (2011). CRAGGING Measures of Variable Importance for Data with Hierarchical Structure, in New Perspectives in Statistical Modeling and Data Analysis, eds. S. Ingrassia, R. Rocci, M. Vichi, Heidelberg: Springer, 393–400.
Full Text: PDF