The first Chern class of Riemannian 3-symmetric spaces: the classical case
Abstract
The existence of Einstein metrics compatible with J on a compact connected almost complex manifold
is deeply concerned with its characteristic classes.Using the method of A. Borel and F. Hirzebruch,we prove that an irreducible simply connected (non-Kähler) compact Riemannian 3-symmetric space
is Einstein if and only if the first Chern class of
vanishes.
![(M,J)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/482ffa9d3988b1e5ca6509feadb1bad3.png)
![(G/K,J,\langle,\;\rangle)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/1f015c35efa165cb2c5782711628ef55.png)
![(G/K,J)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/ceb89f480c199911943ad1ff6f056aee.png)
DOI Code:
10.1285/i15900932v10n1p141
Full Text: PDF