Estimation of benthic macroinvertebrates taxonomic diversity: testing the role of sampling effort in a Mediterranean transitional water ecosystem
Abstract
1 - The accurate evaluation of benthic macroinvertebrate taxonomic diversity in transitional water ecosystems is strictly related to sampling effort and, usually, biomonitoring protocols define the sampling effort needed to the elaboration of a specific ecological indicator. The time-lag between the sampling event and the final assessment of ecological status, and to overall costs for sampling, personnel and sample treatment suggest a reduction of sampling effort.
2 - How to simplify methods and to reduce efforts without compromising the ecological validity of taxonomic diversity indicators is a topic recurrently debated in the procedures for sampling protocol implementation. Regarding this topic, the identification of optimal sample unit size (SUS) and sieve mesh size (SMS) is still lacking, mainly for benthic macroinvertebrates of Mediterranean transitional water ecosystems.
3 - The present study analyzes the effect of the increasing the sampling effort in terms of sample unit size (SUS; 0.0225 m2, 0.0450 m2, 0.0675 m2, 0.0900 m2) and sieve mesh size (SMS; 0.5 mm, 1 mm, 2 mm) on the estimation of taxonomic diversity in a Mediterranean lagoon. Benthic macroinvertebrates were collected in September 2009 at two locations, considering a perturbed and a relatively unperturbed study site of Lesina lagoon (South-East Italy). Samples were sieved on a column of three decreasing mesh sizes of sieves. Taxonomic richness (S), Shannon–Weaver index (H’), Simpson index (λ) and Taxonomic distinctness (TD) were calculated for each study site, SUS and SMS combination, and replicate. The difference between perturbed and relatively unperturbed site was tested according to the variation of sampling effort using three-way ANOVA tests.
4 - As expected, the accuracy of the results increased with increasing of SUS and SMS, the difference between perturbed and relatively unperturbed study site were always highlighted by each taxonomic diversity index, independently by used SUS and SMS. The variation of taxonomic diversity indicators seems to depend mainly by used sieve mesh size suggesting the reduction of sampling effort through the reduction of sample unit size.
5 - Finally, this contribution could be useful in harmonizing sampling methodologies for the cost-effectiveness taxonomic diversity estimation and biomonitoring programs.
2 - How to simplify methods and to reduce efforts without compromising the ecological validity of taxonomic diversity indicators is a topic recurrently debated in the procedures for sampling protocol implementation. Regarding this topic, the identification of optimal sample unit size (SUS) and sieve mesh size (SMS) is still lacking, mainly for benthic macroinvertebrates of Mediterranean transitional water ecosystems.
3 - The present study analyzes the effect of the increasing the sampling effort in terms of sample unit size (SUS; 0.0225 m2, 0.0450 m2, 0.0675 m2, 0.0900 m2) and sieve mesh size (SMS; 0.5 mm, 1 mm, 2 mm) on the estimation of taxonomic diversity in a Mediterranean lagoon. Benthic macroinvertebrates were collected in September 2009 at two locations, considering a perturbed and a relatively unperturbed study site of Lesina lagoon (South-East Italy). Samples were sieved on a column of three decreasing mesh sizes of sieves. Taxonomic richness (S), Shannon–Weaver index (H’), Simpson index (λ) and Taxonomic distinctness (TD) were calculated for each study site, SUS and SMS combination, and replicate. The difference between perturbed and relatively unperturbed site was tested according to the variation of sampling effort using three-way ANOVA tests.
4 - As expected, the accuracy of the results increased with increasing of SUS and SMS, the difference between perturbed and relatively unperturbed study site were always highlighted by each taxonomic diversity index, independently by used SUS and SMS. The variation of taxonomic diversity indicators seems to depend mainly by used sieve mesh size suggesting the reduction of sampling effort through the reduction of sample unit size.
5 - Finally, this contribution could be useful in harmonizing sampling methodologies for the cost-effectiveness taxonomic diversity estimation and biomonitoring programs.
DOI Code:
10.1285/i1825229Xv7n2p28
Keywords:
benthic macroinvertebrates; taxonomic diversity estimation; sample unit size; sieve mesh size; sampling effort; Mediterranean transitional waters; Lesina lagoon
Full Text: PDF