Relativistic mechanics, cosymplectic manifolds and symmetries


We consider the formulation by Jany\vska and Modugno of the phase space of relativistic mechanics in the framework of jets of 1-dimensional time-like submanifolds. Here,the gravitational and electromagnetic structures are encoded in a cosymplectic form.We derive the equation of motion of one relativistic particle in this framework,and prove that the Lagrangian of our model is non-degenerate. This makes the phase space a universal primary constraint. Finally, we show as all symmetries of the equation of motion (including higher or generalized symmetries) can be interpreted as distinguished vector fields on the phase space.

DOI Code: 10.1285/i15900932v23n2p157

Keywords: Einstein general relativity; Particle mechanics; Jets of submanifolds; Non-linear connections; Cosymplectic forms

Classification: 83Cxx; 58A20

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.