Questioni di suriettività di un morfismo canonico tra due complessi approssimati
Abstract
In this paper, we introduce the concept of i-couple for two ideals,
, in a local noetherian ring
.This concept is expressed in terms of the structure of
(where M is an approximation complex for the double Koszul complex L associated to the system of generators of J), and it generalizes the idea of (d,i)-sequence introduce in [M-R].We study the relationship between the following properties: 1)
is an i- couple of ideals in R; 2)
is an i- couple of ideals in
, more generally, in
,
.So we get some sufficient conditions for the "ascendent" and "descendent" properties of the i –couple.In particular, we study the surjectivity of the natural morphism(Error rendering LaTeX formula), since the surjectivity of
is a sufficient condition for the "descendent" property of the i - ouple from R to
.
![J,I, J\supseteq I](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/4a0986e38e552b0fe5f94d01a4fe3976.png)
![(R,m)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/d654818d4436ccbe7f647b406629656a.png)
![H<sub>i</sub>(M)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/e25222621bd0620b5ae6b1c12bb7efef.png)
![(J,I)](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/ac17772658e5914342a35deae3a22c73.png)
![\bar{J},\bar{I}](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/8b850eeb91e337d303243714643cc42e.png)
![\bar{R}=R/I](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/fe66ecca5256e9b22d58d3d518261263.png)
![R/I'](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/d5003c7c667a296c7496e12f9b2c9083.png)
![I'⊆ I](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/c25834948803aa6b0e98641d0d183518.png)
![\bar{φ}<sub>i</sub>](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/d3557234db189d8947995607212d546e.png)
![\bar R](http://siba-ese.unisalento.it/plugins/generic/latexRender/cache/91895e545fe4d64eb41b9121462ff33f.png)
DOI Code:
10.1285/i15900932v6n1p61
Full Text: PDF