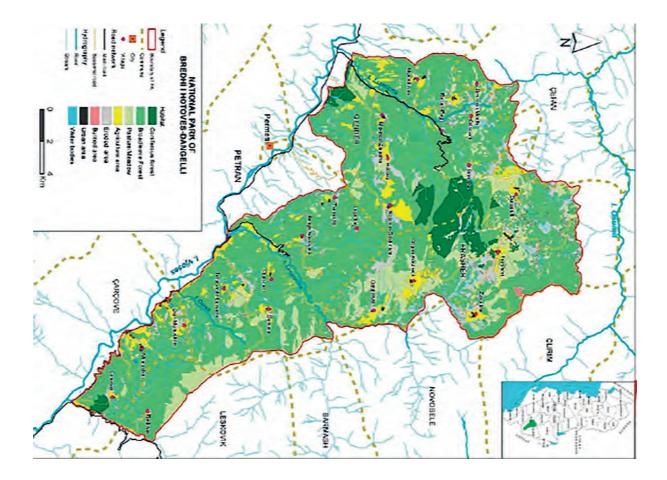
SPASE SHUMKA¹, FERDINAND BEGO², SAIMIR BEQIRAJ², ANILA PAPARISTO² LEFTER KASHTA², LAURA SHUKA², LULEZIM SHUKA², ALEKO MIHO², SOTIR MALI³

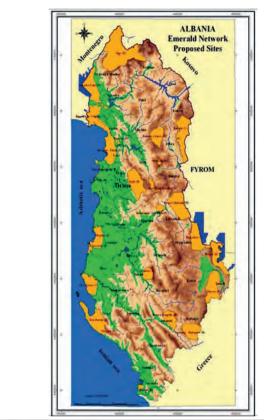
 ¹FBF, Agricultural University of Tirana, Albania
 ²FNS, Tirana University, Albania
 ³ FNS, Elbasan University, Albania email: sprespa@gmail:com

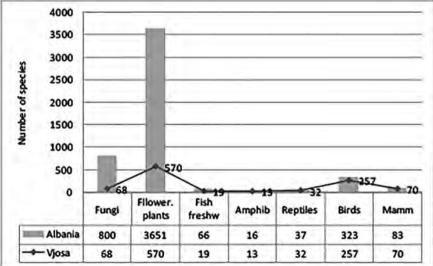
CURRENT KNOWLEDGE OF BIODIVERSITY IN VJOSA RIVER SYSTEMCOUNTING THREATS THAT JEOPARDIZE SPECIES AND ECOSYSTEMS SURVIVAL

How much we know about Vjosa Biodiversity?

A search of, any time' type via Google Scholar:40 (35 time less than Ohrid) (33 time less than Shkodra) (25 time less than Prespa) (4 time less than Drini) **Why this presentation and Where it is based?** The risk from HPPs, High biodiversity values, & Intensive field works in last two years, Interdisciplinary approach, Other sources of primary and secondary type


Fig. 4. Scheme of biogeographical and faunistic territories of the Balkan Peninsula and adjacent countries. Distribution of faunistic elements. A. Plains: 1. Pannonian; 2. Dacian (Vallachian); 3. Pontian; 4. Lombardian; 5. Thracian; 25. Thessalian. B. Coasts of the following Mediterranean seas: 6. Adriatic; 7. Ionian; 8. Aegean; 9. Pontian; 10. Ancient Pannonian. C. Characteristic hill and sub-montane elements: 11. sub-Pannonian; 12. sub-Dacian; 13. sub-Pontian; 14. Moesian; 15. Strandjanian; 16. Macedonian; 17. Liburnian. D. Elements characteristic of mountain systems: 18. Eastern Alps; 19 Northern Dinarids; 20. Southern Dinarids; 21. Carpathian; 22. Balkan Range (Stara Planina); 23. Rilo-Rhodopes; 24. Mountains of Southern Greece and Peloponese; 25. Thessalian plain (Matvejev, 1980).




Ecoregion (WFD documents): Hellenic Western Ballkan.

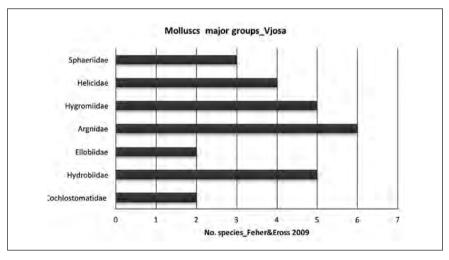
European Green belts and Albania 12, 500 km North to South Importance of Albanian PAs.

More than 95 taxa were present in the phytoplankton of the lagoon; besides a high proportion of diatoms, dinoflagellates, cryptophyceae and some filamentous cyanobacteria have been detected.

The scarce exchange with the sea and a potential high input of nutrients from Vlora town and the surrounding watershed may be the cause for the dominance of the filamentous cyanobacteria *Oscillatoria* spp., as well as for the increase of dinoflagellates of the genera *Prorocentrum* and *Dinophysis*; some of the latter, *Prorocentrum minimum* and *P. lima*, are highly toxic.

For the marine zone with a sandy substratum submersed meadows of *Posidonia oceanica* are characteristic at depths from 2 to 20 m.

In shallow and protected zones *Posidonia* is substituted by *Cymodocea nodosa* or rarely by *Zostera noltii* as seen near the Treporti cape.

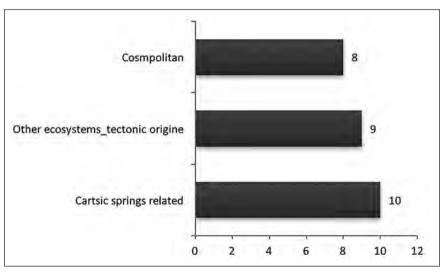

These habitats are often complemented by the green algae *Caulerpa prolifera* and *Flabella petiolata*.

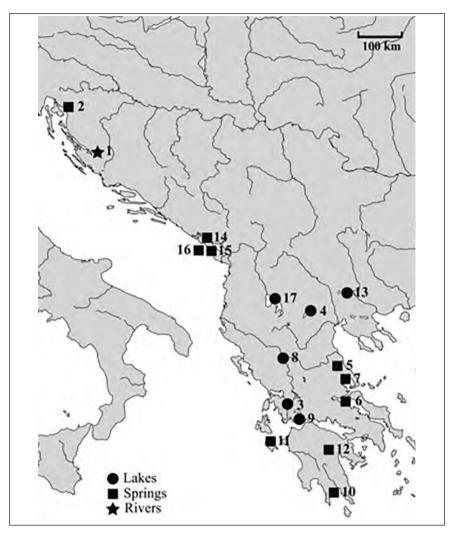
On rocky substrates near the Treporti cape the brown algae *Cystoseira* is more frequent, mainly *C. barbata*. Members of the genera *Acetabularia, Flabella, Anadiomene, Dasycladus, Hypnea* and *Sargassum* indicate the tropical affinity of the site.

Some Atlantic influence is represented by the species *Taonia atomaria* and *Sphaerococcus coronopifolius*, while *Fucus virsoides* is an Adriatic endemic species.

A total of **49 taxa** of benthic macro-invertebrates. The highest quantitative variation has been recorded for the net spinners Hydropsyche (Tricoptera), while the variation of species number had the highest value for coleopters.

75 different taxa. Ephemeroptera appeared to be the most abundant order in almost all sites during the high flow season. Trichoptera constituted the second most abundant order, and during the low flow period their family, Hydropsychidae, became dominant.


Cochlostomatidae


Cochlostoma tessellatum tepelenum Hydrobiidae Orientalina albanica (Radoman, Radomaniola albanica Radoman, 1973 (carstic springs) Grossuana euxina (A. J. Wagner, 1828) Ellobiidae Myosotella myosotis (Draparnaud, 1801) Argnidae Agardhiella truncatella (L. Pfeiffer, 1841) Albinaria senilis inconstans (Mousson, 1859) Oxychilus inopinatus (Ulicný, 1887) Periferi Përmet, Petran, at the confluence of Vjosa and Lengarica, 300 m a.s.l.

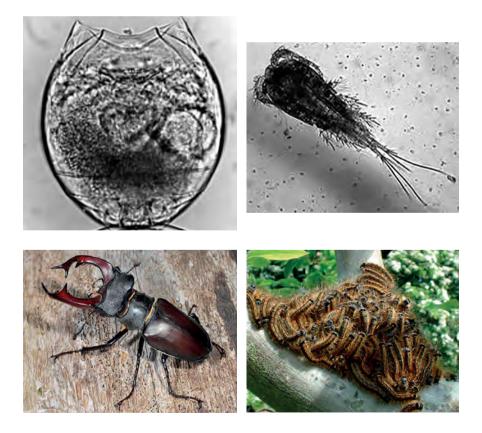
Hygromiidae

Monacha emigrata senitshika Hausdorf, 1996 Hiltrudia kusmici (Clessin, 1887) Metafruticicola occidentalis Subai, 1999 Helicidae Liburnica albanograeca (Subai, 1995) . Sphaeriidae Pisidium personatum Malm, 1855

New species to Albania, this is the second *Pisidium* species found in Albania (apart from the fauna of the great tectonic lakes-Prespa).

Locations of the extinct mollusks of the Balkan region: 1, *Belgrandiella zermanica*, *Dalmatinella fluviatilis*, *Islamia zermanica*, *Tanousia zrmanjae*; 2, *Graziana lacheineri adriolitoralis*, *Vinodolia fiumana*; 3, *Dianella schlickumi*; 4, *Graeco-anatolica vegorriticola*; 5, *Graecorientalia vrissiana*; 6, *Grossuana serbica vurliana*; 7, *Heleobia achaja sorella*, *Turcorientalia hohenackeri hohenackeri*; 8, *H. steindachneri*, *I. epirana*, *Orientalina curta albanica*, *Paladilhiopsis janinensis*; 9, *I. graeca*, *Pseudoislamia balcanica*, *Trichonia trichonica*, *Valvata klemmi*; 10, *I. hadei*; 11, *Pseudamnicola macrostoma*; 12, *T. kephalovrissonia*; 13, *G. macedonica*; 14, *Antibaria notata*, *V. gluhodolica*; 15, *Bracenica spiridoni*; 16, *V. matjasici*; 17, *Ohridohauffenia drimica*

INVERTEBRATES - Arthropods Un-expectable rich zooplankton composition


(Kelcyra Gorge Glide-May, June 2015)

Ascomorpha ecaudis (Perty), Brachionus angularis Gosse, B. calyciflorus Pallas, Epiphanes sp., Lepadella ovalis (o.f.m.), Kellicottia longispina (Kell.), Keratella cochlearis (Gosse), K. quandrata (Muller), Lecane luna (o.f.m.), L. lunaris (Ehrb.), Mytilina mucronata (Muller), Polyarthra major (Burck.), P. vulgaris Carl., Ploesoma sp., Trichocerca elongata (Gosse), Bosmina longirostris (o.f.m.), Simocephalus exspinosus (Koch), Chydorus sphaericus (o.f.m.), Cyclops sp., Eudiaptomus gracilis Sars, Thermocyclops crassus (Fischer).

More than 150 species of winged insects (Pterygota):

Lepidoptera (63 species), Coleoptera (43), Odonata (8) and Orthoptera (7).

The biological equilibrium becomes occasionally displaced by the development of massive blooms, even of endangered species with multi annual dynamics, like night butterflies with *Thaumetopoea pityocampa*, *Hyphantria cunea* and *Malcosoma neustria*.

VERTEBRATES – Fishes

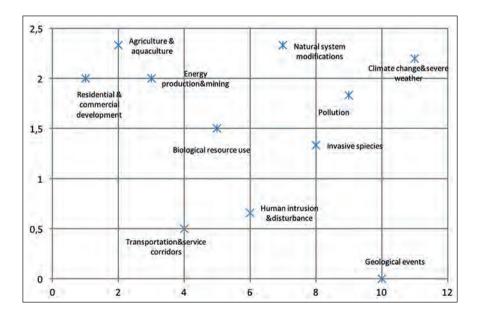
17 species in the up Kalivachi section, 11 marine origin (catodromic and anadromic)

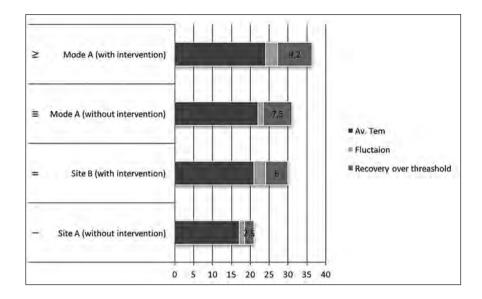
Site.name	Site code	Long E	Lat N	Obs. dens. H IN TOL. inf.150	Obs. 0 dens. 1 02 IN 1 TOL 1	Obs. Tic. C RH. d PAR I	E Obs. H dens. T dens. I LITTH ii	Exp. dens. Exp. H IN dens. TOL. O2 IN inf150 TOL	7	Exp. ric. PAR	Exp. dens. LITH	lds. dens. H IN TOL. inf.150	Ids. dens. 1 02 1 1 N 1 1 N 1 1 TOL	Ids. ric. I RH. 6 PAR I	Ids. dens. LITH N	Method	Rich ness	Capt Eco ures reg		Riv- ST- er Species zone		Aggr. Score Cypr. 1 zone c	FishIn- dex	Fish- In- dex. class
BorderAl-Gr	AL001	20.59	40.071	28.181	29.090	4	140.909 5	55.783	73.048	3.9943	134.72	NA	NA	0.871	0.922 V	Wading	6	312 H	Est 0	0.2051 0	Cyp	0.897	0.8972	2
Border 5	AL002	20.575	40.081	17.368	17.368	3	136.315 5	55.099	72.280	3.3313	134.07	NA	NA	0.828 (0.912 V	Wading	5	268 I	Est 0	0.1231 0	Cyp	0.870 0	0.8708	2
Biovizhde	AL003	20.460	40.165	16.4	15.2	4	90 3	35.823	47.085	4.6680	87.879	NA	NA	0.804	0.915 V	Wading	٢	231 I	Est 0	0.1645 0	Cyp	0.860 (0.8600	2
Br. Stermbec	AL 004	20.460	40.165	16.086	11.739	5 9	98.2608 4	43.448	57.291	6.0106	108.03	NA	NA	0.788 0	0.873 V	Wading	6	261 I	Est 0	0.1034 0	Cyp	0.830	0.8309	5
Petran	AL005	20.448	40.177	12.727	10.454	5 8	83.6363 3	35.867	47.525	6.0239	91.010	NA	NA	0.787	0.876 V	Wading	6	210 H	Est 0	0.1095 0	Cyp	0.832 (0.8323	2
Permet	AL006	20.41	40.207	NA	16.5	5 8	88.5 3	35.918	47.710	5.3607	92.077	NA	NA	0.840	0.892 V	Wading 8	~	193 I	Est 0	0.1709	Cyp	0.866	0.8665	2
Grabove	AL007	20.241	40.285	20.434	12.608	5 7	75.6521 2	28.380	37.844	4.6989	73.932	NA	NA	0.898	0.915 V	Wading	7	178 I	Est 0	0.1629 0	Cyp (0.906	0.9066	2
Exit Kelcyra	AL008	20.174	40.302	4.1176	1.1764	4	41.1764 1	16.492	22.031	4.7028	43.294	NA	NA	0.801	0.889 V	Wading	7	77 I	Est 0	0.0259 0	Cyp	0.845 (0.8453	2
G1 Kelcyra	AL009	20.131	40.298	1.2631	0.4210	5 1	12.842 5	5.2334	6.9972	5.3768	13.787	NA	NA	0.838 0	0.881 N	Mixed 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	137 H	Est 0	0.0291 0	Cyp (0.860	0.8603	2
G2 Kelcyra	AL010	20.128	40.298	NA	0.7	6 9	9.5 3	3.9789	5.3243	6.0512	10.519	NA	NA	0.867	0.870 N	Mixed	6	110 H	Est 0	0.0545 0	Cyp (0.869 (0.8690	2
Dragoti Bridge	AL011	20.078	40.292	29.629	22.222	4	65.185 2	27.773	37.242	6.0570	74.075	NA	NA	0.688 0	0.861 V	Wading	6	209 I	Est 0	0.2870	Cyp (0.775	0.7751	2
En. Memaliaj	AL012	20.060	40.279	23.2	20.4	5 9	94 3	34.981	47.070	5.3926	94.648	NA	NA 0	0.837 0	0.904 V	Wading 8	∞	247 I	Est 0	0.2064 0	Cyp (0.870	0.8709	2
Af. Memaliaj	AL013	20.013	40.281	27.5	25	4	104.5 3	37.004	49.913	4.0489	101.14	NA	NA 0	0.865	V 816.0	Wading	9	211 F	Est 0	0.2369 0	Cyp (0.892	0.8921	2
Iliras	AL014	19.882	40.375	15.4545	15.454	3 7	74.090 2	29.059	39.346	4.7319	80.710	NA	NA	0.680 (0.876 V	Wading	7	185 I	Est 0	0.1837 0		0.778 0	0.7786	2
Pocem	AL015	19.740	40.496	22.333	21.666	4	76.333 2	29.886	40.607	6.7706	84.232	NA	NA	0.637 0	0.871 V	Wading	10	263 I	Est 0	0.2471 0	Cyp	0.754 (0.7548	2
Pocem West	AL016	19.723	40.491	11.666	12.333	5 5	54 2	23.004	31.279	7.4501	65.030	NA	NA	0.689 0.841		Wading	11	203 I	Est 0	0.1674 Cyp		0.765 (0.7654	2

The amphibians (13 species out of 16 at national level) are a taxonomic group usually connected with different habitats during their lifecycle, both water and terrestrial. The most popular amphibians encountered are the Yellow-Bellied Toad (*Bombina variegata*) and the Common Toad (*Bufo bufo*). Present as well *Rana graeca, Rana balcanica, Triturus cristatus*.

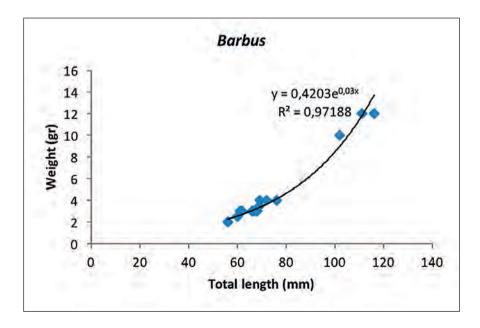
Reptiles (**32 of 37 species**) are represented by Balkan Whip Snake (*Coluber gemonensis*), Leopard Snake (*Elaphe situla*), four-lined snake (*Elaphe quatuor-lineata*), Hermann's tortoise (*Testudo hermanni*), European pond turtle (*Emys or-bicularis*) and the European green lizard (*Lacerta viridis*).

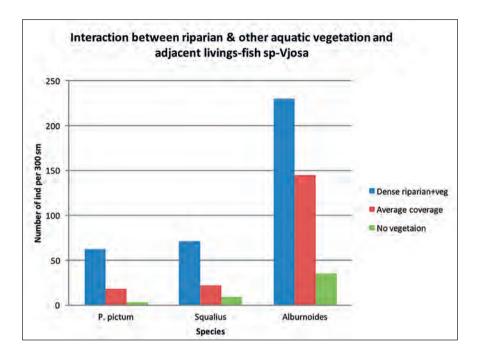
There is a wide variety of bird (**257 out 323 species**) species present within the valley in connection to the different ecosystems and habitats. Species, such as Eagle Owl (*Bubo bubo*), Long-legged Buzzard (*Buteo rufinus*), Levant Sparrow hawk (*Accipiter brevipes*), Lanner Falcon (*Falco biarmicus*), <u>Sparrow hawk</u> (*Accipiter nisus*), Golden Eagle (*Aquila chrysaetos*), European Honey Buzzard (*Pernis apivorus*), Gosshawk (*Accipiter gentilis*), Short-toed Eagle (*Circaetus gallicus*), Egyptian Vulture(*Neophron percnopterus*), Grey-headed Woodpecker (*Picus canus*), Barn Owl (*Tyto alba*) and Kestrel (*Falco tinnunculus*) are present and good indicators of the areas ecosystems condition.

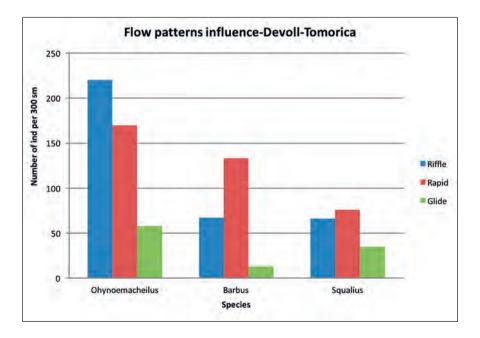


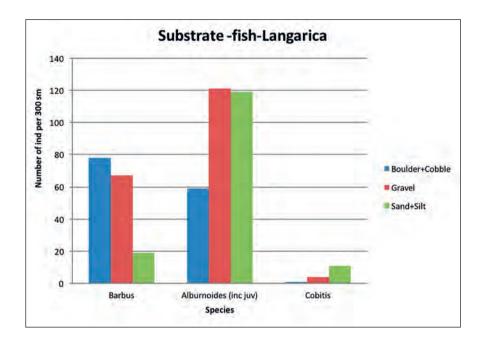

70 mammalians out of 83 at national level

Large carnivores are also common such as the **brown bear** (*Ursus arctos*) and the wolf (*Canis lupus*). Large mammals in the wider area also comprise the roe deer (*Capreolus capreolus*) and wild boar (*Sus scrofa*). Furthermore the mammals are also presented by bats (*Rhinolophus euryale*), *Rhinolophus blasii and Myotis cappaccinii*), red squirrel (*Sciurus vulgaris*), fat dormouse (*Glis glis*), hazel dormouse (*Muscardinus vellanarius*), beech marten (*Martes foina*), badger (*Meles meles*), red fox (*Vulpes vulpes*) and wild cat (*Felis sylvestris*).


Threat class	Major threat	Level of knowl- edge	Impact	Average impact	Maximum impact
	1.1. Housing & urban areas	well - known	3		
1. Residential & commercial develop-	1.2. Commercial & industrial areas	moderately known	1	2	3
ment	1.3. Tourism & recreation areas	well - known	2		
	2.1 Annual & perennial non- timber crops	less-known	2		
2. Agriculture & aqua-	2.2 Wood & pulp plantations	less-known	1		
culture	2.3 Livestock farming & ranching	well - known	2	2 (2.33)	3
	2.4 Marine & freshwater aqua- culture	less-known	2]	
	3.1. Oil & gas drilling	well - known	1		
3. Energy production &	3.2. Mining & Quarrying	well - known	2		2
mining	3.3. River mining	well - known	3	2	3
	3.4. Renewable energy	well - known	2		
	4.1. Road & railroads	well - known	2		
4. Transportation &	4.2. Utility & service lines	-	0	1(0.5)	
service corridors	4.3. Shipping lanes	-	0	1(0.5)	2
	4.4. Flight paths	-	0	1	
	5.1. Hunting & Trapping animals	moderately known	2		
5. Biological	5.2. Gathering terrestrial plants	moderately known	1		
resource use	5.3. Logging & wood harvesting	well - known	3	2 (1.5)	3
	5.4. Fishing & harvesting aquatic resources	moderately known	1		
6. Human intrusion & disturbance	6.1. Recreational activities	less-known	1	1 (0.66)	
	6.2. War, civil unrest & military exercises	-	0		1
	6.3. Work & other activities	less-known	1		
	7.1. Fire & fire suppression	less-known	2		
 Natural system modifications 	7.2. Dams & water management/ use	moderately known	2	2 (2.33)	3
	7.3. Other ecosystem modifica- tions	less-known	3		


	8.1. Invasive non-native/alien species	moderately known	2		
8. Invasive species	8.2. Problematic native species	less-known	0	1 (1.33)	2
	8.3. Introduced genetic material	less-known	2]	
	9.1. Domestic & urban waste water	well - known	3		
	9.2. Industrial & military effluents	moderately known	2		
9. Pollution	9.3. Agricultural & forestry effluents	moderately known	2	2 (1.83)	3
	9.4. Garbage & solid waste	well - known	3		
	9.5. Air-borne pollutants	less-known	1]	
	9.6. Excess energy	-	0]	
	10.1. Volcanoes	-	0		
10. Geological events	10.2. Earthquakes/tsunamis	-	0	0	0
	10.3. Avalanches/landslides	-	0]	
	11.1. Habitat shifting & alteration	well - known	3	2(2.2)	
	11.2. Droughts	less-known	3		3
11. Climate change & severe weather	11.3. Temperature extremes	less-known	2		
	11.4. Storms & floodings	less-known	3]	
	11.5. Other impacts	-	0	1	





The effects of fluctuating temperature regimes on temperature tolerance, thermal stress accumulation and recovery, and growth is still largely a mystery.

CONCLUSIONS

Protecting river and stream life in entire Vjosa catchment seems to be a complicated challenge. Due to a large watershed and water flows downhill, freshwater species are affected by activities taking place anywhere upstream or uphill in the watershed, even many kilometers away. Conservation actions must therefore address threats to water quantity and quality over the wider areas that are upstream from risked species and habitats. Further to that it is wise to consider that all type of human activities in watersheds can pose a host of threats to freshwater species. Yet, it is often difficult to address the stresses on streams species, and habitats (Lengarica, Benja, etc). Even when these impacts are correctly recorded, the sources of water quality and quantity problems can be difficult to control. In general in case of Vjosa from the Pindos sources to the river delta, the human activities within the watershed are incompatible with conservation objectives for freshwater species and habitats lined in various protected areas management plans.