List of symbols

Number sets and vector spaces

$\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$	set of natural, integer, rational, real and complex numbers
\mathbf{R}^{n}	set of all real n-tuples
\mathbf{S}^{n-1}	unit sphere of \mathbf{R}^{n}
\mathbf{R}_{+}^{n}	$\mathbf{R}^{n} \cap\left\{x_{n} \geq 0\right\}$
\mathbf{C}^{n}	set of all complex n-tuples
$a \wedge b, a \vee b$	minimum and maximum of a and b
$\|\alpha\|$	the length of the multi-index α, i.e.
	$\|\alpha\|=\alpha_{1}+\cdots+\alpha_{n}$
$\operatorname{Re} \lambda, \operatorname{Im} \lambda$	real and imaginary part of $\lambda \in \mathbf{C}$
$\# E$	the cardinality of the set E
Topological and metric space notation	
\bar{E}	topological closure of E
∂E	topological boundary of E
E^{c}	the complementary set of E in a domain
$E \subset \subset F$	Ω or in \mathbf{R}^{n}
$B\left(x_{0}, r\right)$	$\bar{E} \subset F, \bar{E}$ compact
$B^{+}(0, r)$	open ball with center x and radius r
$\mathcal{L}(X, Y)$	$B(0, r) \cap \mathbf{R}_{+}^{n}$
$\mathcal{L}(X)$	set of bounded and linear operators
X^{\prime}	from X to Y

I
$\operatorname{det} B$
e_{i}
$\operatorname{Tr} B$
$\|B\|_{\infty}$
$\|B\|_{1, \infty}$
$\|B\|_{2, \infty}$
$\langle\cdot, \cdot\rangle$ or $x \cdot y$

Function spaces: let $f: X \rightarrow Y$
$f\left\llcorner E\right.$ or $f_{\mid E}$
$\operatorname{supp} f$
χ_{E}
u_{t}
D_{i}
$D_{i j}$
Du
$D^{2} u$
Δu
$C(X, Y)$
$C(\Omega)$
$C_{c}(\Omega)$
$C_{0}(\Omega)$
$U C_{b}(\Omega)$
$C_{b}^{k}(\bar{\Omega})$
$C^{\alpha}(\Omega)$
$C^{k, \alpha}(\Omega)$
$\mathcal{S}\left(\mathbf{R}^{n}\right)$
$[u]_{C^{\alpha}(\Omega)}$
$\|\cdot\|_{L^{\infty}(\Omega)}$
$\|u\|_{C^{k, \alpha}(\Omega)}$
$\left(L^{p}(\Omega),\|\cdot\|_{L^{p}(\Omega)}\right)$
$\left(W^{k, p}(\Omega),\|\cdot\|_{W^{k, p}(\Omega)}\right)$
$W_{\mathrm{loc}}^{k, p}(\Omega)$
$W_{0}^{k, p}(\Omega)$
$W^{-m, p}(\Omega)$
$B V(\Omega)$
the identity matrix
the determinant of the matrix B
i-th vector of the canonical basis of \mathbf{R}^{n}
the trace of the matrix B
the Euclidean norm of the matrix B, i.e.
$\left(\sum_{i, j=1}^{n} b_{i j}^{2}\right)^{1 / 2}$
$\left(\sum_{i, j, h=1}^{n}\left|D_{h} b_{i j}\right|^{2}\right)^{1 / 2}$
$\left(\sum_{i, j, h, k=1}^{n}\left|D_{h k} b_{i j}\right|^{2}\right)^{1 / 2}$
the Euclidean inner product between the vectors $x, y \in \mathbf{R}^{n}$
restriction of f to $E \subset X$
closure of $\{x \in X: f(x) \neq 0\}$
characteristic function of the set E
partial derivative with respect to t
partial derivative with respect to x_{i}
$D_{i} D_{j}$
space gradient of a real-valued function u
Hessian matrix of a real-valued function u
$\operatorname{Tr}\left(D^{2} u\right)$
space of continuous functions from X into Y space of continuous functions valued in \mathbf{R} or \mathbf{C} functions in $C(\Omega)$ with compact support in Ω closure in the sup norm of $C_{c}(\Omega)$
space of the uniformly continuous and bounded functions on Ω
space of k-times differentiable functions with $D^{m} f$
for $|m| \leq k$ bounded and continuous
up to the boundary
space of α-Hölder continuous functions, $\alpha \in(0,1)$
space of $f \in C^{k}(\Omega)$ with $D^{m} f \in C^{\alpha}(\Omega)$ for
$|m| \leq k$ and $\alpha \in(0,1)$
Schwartz space of rapidly decreasing functions
the seminorm $\sup _{x, y \in \Omega} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}$
sup norm
$\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(\Omega)}+\left[D^{k} u\right]_{C^{\alpha}(\Omega)}$
usual Lesbegue space
usual Sobolev space
space of functions belonging to $W^{k, p}\left(\Omega^{\prime}\right)$
for every $\Omega^{\prime} \subset \subset \Omega$
closure of $C_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$
dual space of $W_{0}^{m, p^{\prime}}(\Omega)$ with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$
functions with bounded variation in Ω

Operators

\mathcal{A}	linear operator
\mathcal{A}^{*}	formal adjoint operator of \mathcal{A}
A	realization of \mathcal{A} in a Banach space X
$D(A)$	the domain of A
$\rho(A)$	resolvent set of the linear operator A
$\sigma(A)$	spectrum of the linear operator A
I	identity operator
$[A, B]$	the operator $A B-B A$ defined in
	$D(A B) \cap D(B A)$
$M e a s u r e ~ t h e o r y ~ a n d ~$	
$\mathcal{B}(X)$	
	σ functions
$[\mathcal{M}(X)]^{m}$	space X
$\mathcal{M}^{+}(X)$	the \mathbf{R}^{m}-valued finite Radon measures on X
\mathcal{L}^{n}	the space of positive finite measures on X
ω_{n}	Lebesgue measure in \mathbf{R}^{n}
\mathcal{H}^{k}	Lebesgue measure of $B(0,1)$ in \mathbf{R}^{n}
$\|E\|$ or $\mathcal{L}^{n}(E)$	k-dimensional Hausdorff measure
$\|\mu\|$	the Lebesgue measure of the set E
$\mu\llcorner E$	total variation of the measure μ
$D u$	restriction of the measure μ to the set E
$\mathcal{P}(E, \Omega)$	distributional derivative of u
$\mathcal{P}(E)$	perimeter of E in Ω
ν_{E}	perimeter of E in \mathbf{R}^{n}
E^{t}	generalized inner normal to E
$\mathcal{F} E, \partial^{*} E$	set of points of density t of E
	reduced and essential boundary of E

