List of symbols

set of natural, integer, rational, real and
complex numbers
set of all real n -tuples
unit sphere of \mathbf{R}^n
$\mathbf{R}^n \cap \{x_n \ge 0\}$
set of all complex n -tuples
minimum and maximum of a and b
the length of the multi-index α , i.e.
$ \alpha = \alpha_1 + \dots + \alpha_n$
real and imaginary part of $\lambda \in \mathbf{C}$
the cardinality of the set E
topological closure of E
topological boundary of E
the complementary set of E in a domain
Ω or in \mathbb{R}^n
$\overline{E} \subset F, \overline{E} \text{ compact}$
open ball with center x and radius r
$B(0,r) \cap \mathbf{R}^n_+$
set of bounded and linear operators
from X to Y
$\mathcal{L}(X,X)$
dual space of the Banach space X

Matrix and linear algebra		
I	the identity matrix	
$\mathrm{det}B$	the determinant of the matrix B	
e_i	<i>i</i> -th vector of the canonical basis of \mathbf{R}^n	
${ m Tr} B$	the trace of the matrix B	
$ B _{\infty}$	the Euclidean norm of the matrix B , i.e.	
	$(\sum_{i,j=1}^{n} b_{ij}^2)^{1/2}$	
$ B _{1,\infty}$	$(\sum_{i,j,h=1}^{n} D_h b_{ij} ^2)^{1/2}$	
$\ B\ _{2,\infty}$		
$\langle \cdot, \cdot \rangle$ or $x \cdot y$	the Euclidean inner product between the	
	vectors $x, y \in \mathbf{R}^n$	
Function spaces: let $f: X \to Y$		
$f \sqsubseteq E$ or $f_{\mid E}$	restriction of f to $E \subset X$	
$\operatorname{supp} f$	closure of $\{x \in X : f(x) \neq 0\}$	
χ_E	characteristic function of the set E	
u_t	partial derivative with respect to t	
D_i	partial derivative with respect to x_i	
D_{ij}	D_iD_j	
Du	space gradient of a real-valued function u	
D^2u	Hessian matrix of a real-valued function u	
Δu	$\operatorname{Tr}(D^2u)$	
C(X,Y)	space of continuous functions from X into Y	
$C(\Omega)$	space of continuous functions valued in ${\bf R}$ or ${\bf C}$	
$C_c(\Omega)$	functions in $C(\Omega)$ with compact support in Ω	
$C_0(\Omega)$	closure in the sup norm of $C_c(\Omega)$	
$UC_b(\Omega)$	space of the uniformly continuous and bounded	
orly (A)	functions on Ω	
$C^k_b(\overline{\Omega})$	space of k-times differentiable functions with $D^m f$	
	for $ m \le k$ bounded and continuous	
$G(r(\Omega))$	up to the boundary	
$C^{lpha}(\Omega) \ C^{k,lpha}(\Omega)$	space of α -Hölder continuous functions, $\alpha \in (0,1)$	
$C^{\alpha,\alpha}(\Omega)$	space of $f \in C^k(\Omega)$ with $D^m f \in C^{\alpha}(\Omega)$ for	
$\mathcal{C}(\mathbf{D}^n)$	$ m \le k$ and $\alpha \in (0,1)$	
$\mathcal{S}(\mathbf{R}^n)$	Schwartz space of rapidly decreasing functions	
$[u]_{C^{\alpha}(\Omega)}$	the seminorm $\sup_{x,y\in\Omega} \frac{ u(x)-u(y) }{ x-y ^{\alpha}}$	
$\ \cdot\ _{L^\infty(\Omega)}$	$\sum_{k=0}^{n} D_k = D_k $	
$ u _{C^{k,\alpha}(\Omega)}$	$\sum_{ \alpha \le k} \ D^{\alpha} u\ _{L^{\infty}(\Omega)} + [D^{k} u]_{C^{\alpha}(\Omega)}$	
$(L^p(\Omega), \ \cdot\ _{L^p(\Omega)})$	usual Lesbegue space	
$(W^{k,p}(\Omega), \ \cdot\ _{W^{k,p}(\Omega)})$	usual Sobolev space	
$W^{k,p}_{\mathrm{loc}}(\Omega)$	space of functions belonging to $W^{k,p}(\Omega')$	
$\mathbf{H}^{k,p}(\mathbf{O})$	for every $\Omega' \subset\subset \Omega$	
$W_0^{k,p}(\Omega)$	closure of $C_c^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$	
$W^{-m,p}(\Omega)$	dual space of $W_0^{m,p'}(\Omega)$ with $\frac{1}{p} + \frac{1}{p'} = 1$	
$BV(\Omega)$	functions with bounded variation in Ω	

Operators	1.
\mathcal{A}	linear operator
\mathcal{A}^*	formal adjoint operator of \mathcal{A}
A	realization of \mathcal{A} in a Banach space X
D(A)	the domain of A
ho(A)	resolvent set of the linear operator A
$\sigma(A)$	spectrum of the linear operator A
I	identity operator
[A, B]	the operator $AB - BA$ defined in
	$D(AB) \cap D(BA)$
Measure theory and BV functions	
$\mathcal{B}(X)$	σ - algebra of Borel subsets of a topological
	space X
$[\mathcal{M}(X)]^m$	the \mathbb{R}^m -valued finite Radon measures on X
$\mathcal{M}^+(X)$	the space of positive finite measures on X
\mathcal{L}^n	Lebesgue measure in \mathbb{R}^n
ω_n	Lebesgue measure of $B(0,1)$ in \mathbb{R}^n
\mathcal{H}^k	k-dimensional Hausdorff measure
$ E \text{ or } \mathcal{L}^n(E)$	the Lebesgue measure of the set E
$ \mu $	total variation of the measure μ
$\mu \bot E$	restriction of the measure μ to the set E
Du	distributional derivative of u
$\mathcal{P}(E,\Omega)$	perimeter of E in Ω
$\mathcal{P}(E)$	perimeter of E in \mathbf{R}^n
$ u_E$	generalized inner normal to E
E^t	set of points of density t of E
$\mathcal{F}E,\partial^*E$	reduced and essential boundary of E
	~