Chapter 4

BV functions and parabolic
problems: the first
characterization

This chapter is entirely devoted to functions of bounded variation and sets of finite
perimeter. We have collected several results related to these functions, from the classical
ones present in literature to a new characterization of such functions. This chapter is or-
ganized as follows: in the first section we recall definitions, basic properties and classical
results for functions of bounded variation and sets of finite perimeter.

In the second one we extend classical definitions and properties to functions with pos-
sibly weighted bounded variation on  and finally, in the last section we give a first
characterization for such class of functions in terms of the short-time behavior of T'(¢).

4.1 The space BV: definitions and preliminary results

First we give a brief introduction to the definition of BV functions in non-weighted
Euclidean domains (complete discussions and proofs can be found in [5] and [20]). These
are integrable functions whose weak first-order distributional derivatives are finite Radon
measures. Throughout this chapter we denote by € a generic open set of R™. The
classical integration by parts formula shows that if f € C1(Q) and ¢ € CL(Q, R"), then

/fdiwpd:c:—/go-Dfd:c.
Q Q

The definition of Sobolev functions is based upon a generalization of the integration by
parts formula. A locally summable function g : © — R™ is called a weak derivative of f

73



74

if for all ¢ € C(Q,R"),

/fdiwpdx:—/gwgdx.
Q Q

If |g| is integrable, then f belongs to the Sobolev space W1 (£).

Definition 4.1.1. Let f € L'(Q); we say that f is a function of bounded variation in
if there exists a vector-valued Radon measure py = (u}, ooy 1) on Q with || () finite
such that for all p € C(2,R™),

/Qfdiwdwz —/Qw-duf = —i/ﬂwidu?(w)- (4.1)

The vector space of all functions of bounded variation is denoted by BV ().

By (4.1) it follows that a BV function f belongs to the Sobolev space W1(Q) if and
only if p1f is absolutely continuous with respect to the Lebesgue measure on 2. In this
case iy = Vfdx (see [20, Sec 5.1]), where Vf denotes the density of u; with respect
to dx provided by the Besicovitch differentiation Theorem 1.4.10 and coincides with the
approximate gradient of uw. According to the notation adopted in the Sobolev case we
denote by D f the distributional derivative measure uy. The following proposition leads
to the current working definition for BV functions.

Proposition 4.1.2. Let f € LY(Q). Then f € BV(Q) if and only if

|IDfI(Q) = sup{/Q fdivpdx : ¢ € C;(Q,R”), lloll Loy < 1} < oo

The space BV is a Banach space if endowed with the norm

1 fllBv) = I fllLr @) + sl (2) (4.2)

but the norm-topology is too strong for many applications. Indeed, continuously differ-
entiable functions are not dense in BV (2). For example let @ :=R, f := x(1,2) € L'(R)
and consider { i} a sequence of smooth functions obtained by convolution. Then f}, does
not converge to f with respect to the norm (4.2). In fact Df is absolutely continuous
with respect the Lebesgue measure whereas Df is singular with respect the Lebesgue
measure, being D f = §; — d2 a measure concentrated on two points. Therefore

[Dfiy = DFI(Q) = [Dfel () + [DFI(Q) > [DfI(Q) = 1.
This is true because |\ — u| = || 4+ |u| for mutually singular measures A, p.
An important application of BV function theory is the study of sets of finite perimeter

introduced by R. Caccioppoli in [10]; a detailed analysis of these sets was carried on by
E. De Giorgi (see [16]) and H. Federer (see [21] and the references there).
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4.1.1 Sets of finite perimeter

Given a subset E C R", we denote by |E| its Lebesgue measure, and by H"~1(E) its
(n — 1)-dimensional Hausdorff measure.

Definition 4.1.3. Let E be a measurable subset of R™. The perimeter of E in ) is the
variation of xg in €, i.e.

P(E,Q) = sup {/ divpdz : ¢ € CH(QLR™), [l¢llp~@) < 1} . (4.3)
QNE
We say that E is a set of finite perimeter in Q if P(E,Q) < oo.

When Q@ = R", P(E,R"™) will be simply denoted by P(E). The class of sets of finite
perimeter in € contains all sets E with C! boundary inside Q such that H*~1(QNIE) <
0o. Indeed, by the Gauss-Green theorem, for these sets F we have

/ divpdx = —/ (o, vp)dH™ ! Yo € CHQ,R™) (4.4)
E OE

where vg is the inner unit normal to E. Using this formula the supremum in (4.3) can
be easily computed and it turns out that P(E,Q) = H" 1 (QNIE)

The theory of sets of finite perimeter is closely connected to the theory of BV func-
tions. First of all we notice that if £ C R™ has finite measure in §, that is xg € L'(Q),
then by Proposition 4.1.2, E has finite perimeter in €2 if and only if the characteristic
function xg belongs to BV (); in this case P(E, Q) coincides with |Dxg|(£2), the total
variation in € of the distributional derivative of xg.

The variational measure Dy g can be used to define a measure theoretic boundary de-
noted by FFE and called reduced boundary of E, defined as follows.

Definition 4.1.4. (Reduced boundary) Let E be a measurable subset of R™ with finite
perimeter in Q. We define

FE = {x € supp |[Dxg|NQ: Hé%m =vg(z), and lvp(z)| = 1} . (4.5)

The function vg : FE — S™ ! is called the generalized inner normal to E,

By the Besicovitch differentiation theorem (see Theorem 1.4.10) we know that |Dy g
is concentrated on FE and Dxg = vg|Dxg|- De Giorgi proved that FE N Q is a
countably (n — 1)- rectifiable set (i.e. FE = J,en Kn U No with H*™1(Ng) = 0 and K},
compact subsets of C! manifolds M, see Definition 1.4.14) and that

Dxg =vgH" 'LFE. (4.6)

These results imply that the classical Gauss-Green formula can be rewritten for sets of
finite perimeter in € in the form

/ divpdr = 7/ (o, vg)dH™ ! Vo € CHQ,R™M). (4.7
ENQ FE
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Observe that in (4.7) the inner normal and the boundary have to be thought in a measure
theoretic sense and not in the topological one.

Another important result due to De Giorgi is a blow-up property for points of the reduced
boundary (see [16] for the original reference).

Theorem 4.1.5. (De Giorgi) For any x € FE the following properties hold

(i) the sets B = (E —x)/p locally converge in measure in R" to the half space H,(z)
orthogonal to vg(x) and containing ve(x) as p — 0T

HVE(CE) = {y eR": <VE(.’17),y - $> > O}a

*
Wioe

(ii) L E; =5 L"LH,z) as p— 0T, i.e.

lim $(y)dy = / o(y)dy Vo € Co(RY).
QnEz H

T
p=0 vE(z)

Now we examine the density properties of sets of finite perimeter.

Definition 4.1.6. Let E be a measurable subset of R™. For every o € [0, 1] we denote
by E“ the set of points of R™ where E has density «, that is

Ea—{xGR":EllimmeQ(x)'—a}; (4.8)

The essential boundary is then defined as 0*E = R™ \ (E° U E'), i.e., the set of points
where the density of E is neither 0 nor 1.

Theorem 4.1.7. (Federer) Let E be a set of finite perimeter in Q. Then
FENQCEY?CdE and H" ' (Q\(E°UFEUEY))=0

In particular, H"~'- a.e. © € 0*E N belongs to FE.

4.2 Weighted BV functions

A natural way to extend the definition of functions of bounded variation in the
weighted Euclidean case on ) is described here. Given a symmetric positive definite
matrix P = (p;;)7;_;, and a function f € L'(Q), we define the weighted total variation,
by setting

IDflp(Q)sup{ /Q Jdivida : € CHQ R, [P~ < 1} (4.9)

and say that f has finite total weighted variation, if |Df|p(2) < 4o00. Thus, as in the
classical case we denote by BVp as the space of L! functions that have finite weighted
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total variation. Notice that if P has entries p;; € C1(£2), then the total variation can be
equivalently defined by

|Dulp(9) = sup { /Q udiv(PY2g)dz - ¢ € CHQLR™), 6]y < 1} |

Of course, if P is the identity matrix then |Df|p reduces to the classical definition of
total variation for an L' function and in this case we write f € BV (Q) and drop the P
everywhere. The space BVp(£2) turns out to be a Banach space with the norm

IfllBve = £l @) + Dflp(2).

In a similar way, a set E is said to have finite weighted perimeter if | Dy g|p(€2) < +o0.
In this case, its total variation measure is the perimeter of E and it is denoted also by
Pp(E,Q) = |Dxg|p(Q).

Henceforth, we assume that P is a symmetric p elliptic matrix i.e., there exists p > 1
such that p=1|¢]2 < (P(2)¢,€) < plé]? for all € € R™ and all z € Q. We also assume that
the coefficients p;; € C,(2), then, the seminorms |D f|(Q) and |Df|p(£2) are equivalent,
more precisely

1

N

where p is the ellipticity constant of P and this immediately implies that BV (Q2) =
BVp(Q) with equivalence of the norms.

IDfI(Q) < [Df|p(Q) < VulDfI(),

We also notice that if f is regular, then the equality
Ds1p(@) = [ 1D1(@)]pds

holds, where |Df(x)|p = |PY/2Df(x)| = (PDf(x), Df(x))"/*.

Remark 4.2.1. (Lower semicontinuity of the total variation) It is useful to notice that
|D - |p(R) is lower semicontinuous with respect to the convergence in Li (). Indeed

for any ¢ € C1(Q, R"™) with ||P~1/2¢]|o < 1 the integral / fdivey dz is continuous with
)

respect to the L'-norm of f, hence |Df|p, as the supremum of continuous functionals,
is lower semicontinuous.

As in the unweighted case, the norm topology is in some respects too strong, since
for instance smooth functions are not dense with respect to it. Nevertheless, a classical
weaker approximation result is given by the Anzellotti-Giaquinta theorem, see e.g. [5,
Theorem 3.9]. It states that for every f € BV(Q) there exists a sequence of functions
(fr)x C C*(Q) N BV(Q) such that

1F — fullr — 0, /Q IDfilde — |D|(Q):
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Such a sequence is said to converge in variation to f.
The Anzellotti-Giaquinta theorem can be adapted also to the case of weighted BV func-
tions as follows: given a matrix @, we define

Co() = {f € C™(Q) N C'(Q); (QDF,v) = 0 on 9Q} , (4.10)

and the following approximation result holds. We point out that we shall use this propo-
sition in order to approximate a function in BV () with functions in the domain of A;
which verify a condition on 9f).

Proposition 4.2.2. Let Q, P = (p;;)} ;=1 be as above, and let Q = (q;;); ;=1 be an

elliptic matriz with q;; € CL(Q). Then, for every f € BVp(QQ) there exists a sequence of
functions (fi)r C Cq(2) such that

lim If — fillorey =0, lim / D filpdz = [Df|p(Q).
k—oo k—oo Q

PRrROOF. The proof goes as the classical one, except that we have to modify the usual

approximation sequence in a neighborhood of the boundary of 2.
Fix € > 0; since f € BV (Q), there exist functions { fi }r € C°°(2) N BV (£2) such that

fe — fin LY(Q)
/Q|ka|dl’*> IDfI(Q2) as k — oo.

We can find dp > 0 such that for every 6 € (0,d0) the set Q° = {z € Q; dist(z, Q) > §}
satisfies

I el o0 <€, / |V frlde < e vk € N. (4.11)
Q\Qs

The assumption on the regularity on 02 is used to modify the approximating sequence to
make it constant in the direction Qu. Indeed, for every = € Q\ Q° there is the projection
on 00, say Pg(x), such that x may be written z = (1 —t)Pg(z) + 6tQ(Pg(x))v(Pg(z))
for some t € [0,1) (v(y) is the outer normal to dQ° in y). This is possible since the
map v : 9Q° x [0,¢) — Q, ¥(y,t) = y + tQ(y)v(y) defines, for sufficiently small ¢ > 0,
a diffeomorphism on its image, and then we can define Pg(z) = m(¢~'(x)) for any
x € (09 x [0,¢)), where 7 : 9Q° x [0,¢) — 9Q° is given by 1 (y,t) = ¥.

Let us modify the functions fj in the following way

fr(@) = { ;k(PQ(x)) ve Qé\ >
& () x € Q.

Then, choosing ¢ sufficiently small, we have that
’/ |ka|dx—/ |ka|d:z:‘ <e (4.12)
Q Q
Finally, for every T < g we can define the approximants as follows

fr(Po(x))  xe€ QJ\Q%
gi(@) =13 (pr* fr)(z) x€QF\QF
fr(z) z e Q3.
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where p, is the standard mollifier. Then gf € C(Q), (Vgf,Qv) = 0in 9Q Vk € N.
Finally with a standard procedure of diagonalization we can find a sequence {g,:(k)} -
{97} such that

lim [lg7® = £l o) < 3¢, ’/Qlwl“”ldw IDFI(Q)] < 3e.

Now, let ¢ € CH(Q,R") with ||P~1/2¢| = (o) < 1. Then taking into account (4.11) and
(4.12) we have

[ a®divedz= [ Po@)divedot [ (prx fi)dive da
Q 2\Q2 Q2\02°

+/3 frdive dx
020

< 2ellplwrs + [, (fe— Pivg do+ [ faiv do
Q2 Q

— divy dx
/Q\Q%“ fdive
< Bellellwre + [Df|p(Q)

and so
/Q|Dg,:<’“>|p dz < [Df]p() + 3¢l

This estimate and Remark 4.2.1 complete the proof. O

Remark 4.2.3. A particular case of Proposition 4.2.2 is given when Q = A; in this case
we have that C'4(Q2) C D(A;) (it is a core for Ay, i.e. it is dense in D(A;) for the graph
norm || -{|z1(q) +[|A1-[|z1(@) ), and then the weighted BV functions can be approximated
in variation via functions in the domain of the operator Aj;.

There are several other useful properties connecting BV functions to sets of finite
perimeter such as the coarea formula. Next we state a weighted version of it, a particular
case of (see [13, Lemma 2.4]). We relate the weighted variation measure of f and the
weighted perimeter of its level sets.

For f: Q) — R and ¢ € R, define

E,={xeQ: f(x) >t}
Lemma 4.2.4. If f € BV(Q), the mapping
teR— PP(Et, Q)

is L' -measurable.

PROOF. Since f € L'(2), the mapping (z,t) — xg,(z) is L™ x L!- measurable, and
thus, for each ¢ € C(£2, R"), the function

tH/XEtdngo dz
Q
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is £L1-measurable. Let D denote any countable dense subset of C1(Q, R"™). Then

t— P(E,Q) = sup{/ divp dz; ¢ € D, |p| < 1}
Ey

is £!-measurable since it is the supremum of a countable family of measurable functions.

O

Theorem 4.2.5. Let f € BV (Q). Then E; has finite perimeter for L' a.e. t € R and
D1p(@) = | Pr(E.0 (413)
Conversely, if f € L*(Q) and
/ PP(Et, Q)dt < o0
R
then f € BV (Q).
PROOF. Let ¢ € CH(Q,R"), |[P~Y2¢| 1<) < 1. Then

fdivyp dz = /
Q

- ( . dive dx) dt. (4.14)

Indeed, suppose first f > 0, so that

f(x) = /000 xg, (z) dt a.e. x € Q.

/fdlwp dac—/ (/OOOXEt dt dlvga( ) dx

= [ (] e ivpte) o) at
:/OOO</Etdivgodx>dt.

Thus

Similarly if f <0,

whence

A fdivp dz = /2 (/0 (xg, () —1) dt)divgp(x) dx

— 00



81

For the general case, write f = f+ — f~ and (4.14) is proved. From (4.14) we see that

for all ¢ as above,
/ fdivpdx < / Pp(E, Q)dt.
Q R
Hence

[Dfp(€2) < /RPP(Et,Q) dt.

Now, we prove that assertion (4.13) holds for all f € BVp(2) N C>(0).

Let
m(t) ::/ |Df\pdx:/ |Df|pdx.
O\E;, {r<t}

Then the function m is non decreasing, and thus m’ exists for a.e. t € R, with

/ m/(t) dt < / |Df|p dx.
R Q
Now, fix t € R, r > 0, and define n : R — R this way:

0 ifs<t,
n(s) = ST_t ift<s<t+r,
1 ifs>t+r.

Then

(s) = 1oift<s<t+r,
" Tl 0 ifs<tors>t+r.

Hence, for all ¢ € C1(Q, R™) with |P~Y2¢|| () < 1
. 1
- [ at@diveds = [ w(G@)Dfpds=1 [ Df-pdn
Q Q " JEN\E 4,
Now,

m(t+r)m(t)1{ B }
—7“ = r L\Et+r |Df|p dI /Q\Et |Df|p dI
1

_ 7/ \Df|pda
" JENEi4r

1

7/ Df-pdr

" JEN\Ety,

- / n(f(z))dive dx
Q

\%

For those ¢ such that m/(t) exists, we then let r — 0:
m'(t) > 7/ divpodz a.e.te€R.
Ey

Taking the supremum over all ¢ as above:

Pp(E, Q) <m!(t),

(4.15)

(4.16)
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and recalling (4.16) we find

[ Pe(E) < [ IDflnds = DfIn(®).
R Q

This estimate and (4.15) complete the proof for f € BV(2) N C*°(©). Finally, fix
f € BVp(Q) and choose {f;}ren as in Proposition 4.2.2. Then

fe—f inL'(Q) as k — oo.

Define
Ef ={z eQ: fi(z)>1t}.
Now,
max{f(z),fr(z)}
/ |XEf(x)—XEt(x)|dt:/ dt = |fx(z) = f(=)],
R min{ f(x),fr(x)}
consequently

/Q i) — ()| d = /R ( /Q X (2) — x, ()] )

Since fr, — f in L'(f2), there exists a subsequence which, upon reindexing by k if
necessary, satisfies
Xpr — XB, In L'(Q), ae.tecR.

Then by the lower semicontinuity of the the total variation,
Pp(E;, Q) < 1ikxgi£f7>p(Ef, Q).
Thus Fatou’s Lemma implies
/RPp(Et,Q) dt < likrgior.}pr(Ef, Q)

= kIE{.lJka\P(Q)
= |Df|p(Q)

This calculation and (4.15) complete the proof. O

Remark 4.2.6. The coarea formula is true for Borel sets. If f € BV () the set E; has
finite perimeter for £'-a.e. t € R and

DfI(B) = /R Dxe|(B)dt,  Df(B) = /R Dyp, (B) dt
for any Borel set B C Q.

For the weighted total variation also the following continuity property under uniform
convergence holds.
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Proposition 4.2.7. Let P = (pz-j)?’j:l be a symmetric p-elliptic matriz valued function
and let (P )ren be a sequence of matrices valued functions uniformly convergent to P.
Then, for every f € LY(Q) the following holds:

lim |Dfl|py, () = [Df|p(). (4.17)

k—+

ProOOF. We denote by ¢, = ||P~1/2 - (_)1 /2|| o; by the uniform convergence, we have
that ¢ — 0 as k — +00; moreover, we may assume that the P are (u + 1/k)-elliptic,
that is

2 « 1/2 2 2
u+1/k‘§| > |P(k) fl (N+1/k)|€|

or, simply defining w = P(lk/)Qf ,

1
TR < 1P V2wl < v+ 17k,

Then, if ¥ € C(Q, R") with | P/ $l|oc <1, we get

_ 1/2 — 1/2
1P~ e < (1P 2]l + 1(P™% = Py )doe
—1/2
<Py lloe + ekl oo

—1 —1/2
<Py llse + /i + 17K Py ¥l
<14 cpv/p+1/k.

By definition of weighted variation, we get

/Qfdivz/;dx < (1+cp/u+ 1/E)|Df|p()

whence
[Dflpy, () < 1+ e/ i+ 1/E)[Dfp().
With a similar computation, we also get

|Df|P(Q) < (1 + ck\/ﬁ)‘DﬂP(k)(Q)?

and then (4.17) follows by letting k — +oo. O

4.3 A first characterization of BV functions

In this last section we show some connections between the total variation of a generic
function ug € L' and the short time behavior of the solution of a parabolic problem with
initial datum ug. More precisely we connect the total variation of ug to the L' norm of
the gradient of such solution. This result is strictly linked with the original definition
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given by E. De Giorgi [15] of functions of bounded variation which is recalled in the
following paragraph.

Consider the heat semigroup (W (t))¢>o in R™. We show how it is linked to the
definition of function with bounded variation originally given by De Giorgi (see [15]).
For a given function f € L'(R™), we consider the function

WS w) = G [ s vae T ay

2
_ 1 _\z;gﬁd
_W - f(y)e boay
= (Ge = f)(x)

where G¢(z) = (47rt)*”/26*|$|2/4t denotes the Gauss-Weierstrass kernel. By using simple
tools of analysis one can easily prove that W (¢) f(z) — f(x) almost everywhere and also
in L'(R™) as t — 0%. The operator W (t) is also contractive, thus ||[W(¢)f||p1mn) <
[ fll:(gny for any f € L*(R™) and any t > 0. Moreover, if the function g is regular,
then DW (t)g(x) = W (t)Dg(z). Finally, since W(t+ s) f(z) = W(s)W(t) f(z), using the
previous property for g(z) = W (t) f(z), we get

[ ipwes9f@lde= [ WEOWON@Id < [ DWW O] ds.

n n

This computation shows that the function
t— |DW (t) f(z)| dx
R‘VL

is monotone decreasing for every f € L'(R") and then it is well defined the quantity:

Tif] = Jimy | DW (S ()| dr, (4.18)

that a priori can be finite or not. De Giorgi called Z[f] the total variation of f in R"
and he defined the space BV (R™) as the space of functions such that Z[f] < co.

In Theorem 4.3.4 we prove that (4.18) still holds in €2, when the left hand side reduces
to (4.3) and T'(t) is the semigroup generated by the second order uniformly elliptic
operator (A1, D(A1)). More in detail we prove that

| Dug|p(2) = 7}irr(l)/ | DT (t)uo|p dx, (4.19)
—0Jq
for every ug € LY(Q), where |D - |p(£2) is defined in (4.9).
Remark 4.3.1. Notice that, since (T'(¢));>0 is a strongly continuous semigroup on

L'(Q), then by the lower semicontinuity of the total variation with respect to the L!
convergence we obtain

|Dug|p(2) < lirtniélf/ | DT (t)uo| pdex (4.20)
-0 Jo
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for every ug in L(€2). Therefore in order to prove (4.19) it is sufficient to prove

1imsup/ |DT (t)uo|p dz < |Dug|p ().
Q

t—0

Now observe that, for functions in the domain of the operator A, (4.19) is true. Ac-
tually for these functions the result is stronger than (4.19), indeed the following equality
holds

}Ln% | DT (t)ug — Duol| 1 () = 0.

This can be easily seen if we take into account that, by Remark 3.0.6, D(A;) is continu-
ously embedded in W11(Q), i.e., there exists k = k(2, u, My) > 0 such that ug € D(A;)
implies uy € W1(Q) and

[uollwrr ) < E(l[uollLr @) + [lAruoll L1 (@) (4.21)
Furthermore T'(t)Ajug = AT (t)up and by the strong continuity of 7'(t) in L'(Q) we get

| DT (t)uo — Duol| L1 (q)

IN

k(1T (t)uo — uoll 1) + 1A T ()uo — Aruol| L))
= k(|T(#)uo —uollrr(o) + T (t) Aruo — Aruol 11 (a)) -

Example 1. Another simple case in which the existence of the limit as ¢ — 0 of
| DT (t)uo(x)| dx is guaranteed is when € is convex and A = P = I, B = ¢ = 0,

i.g., (T'(t))e>0 is the heat semigroup generated by the Neumann Laplacian and the to-
tal variation is the classical (non-weighted) one. In this case, it is easily seen that
F(t) = ||DT'(t)ugl| 1 (q) is decreasing (as is the case if Q = R™), provided that Q is con-
vex. In fact, in this case computations significantly simplify and go as follows, where we

set u(t,x) = (T'(t)uo)(z) and F(t) = /Q | Dul dz,

1 1
F'(t) = /Qat|Du| dr = /Q m(Du, Doyuy dx = /Q mZDiuDiDzku dx
ik

1 D;u
—— N " D,uD? d ”—1—/ Dr——D?ud
| Duj 2 DrvDicwn = |3 Dy D de

= —/ L<D1/Du Du) dH™ ! +/ 1 “DQUDU . Tr (D2u)2] dr <0
a0 | Dul 7 o |Dul |Dul -

where we have taken into account the Neumann boundary conditions and the fact that
if O is convex then all the curvatures (i.e., the eigenvalues of the matrix Dv) are non-
negative. This estimate and (4.20) allow us to conclude.

The monotonicity is not true in general also when A = A; if € is not convex F' may not
be non-increasing. In [22, Theorem 2.16] there is an example with €2 non convex and
F'(0) > 0.

Before stating the main result, we recall an useful boundary trace theorem whose
proof can be found in [1, Theorem 5.3.6].
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Theorem 4.3.2. Let Q be an open subset of R"™ with uniformly C? boundary; then
the trace operator is continuous from W11(Q) onto L'(02, H" 1), that is, there exists
cq > 0 such that for every u € WH1(Q) the trace v = upq of u on 0N is well defined
and

vl a0,1n—1) < callullwriq)- (4.22)

The following result is a monotonicity estimate for F'(t) = / | DT (t)up|dx and gives
Q

a localized version of (4.19). Here we assume stronger regularity conditions on the coef-
ficient ¢ and recall that

My = max{[|A|2,c0, | Bll2,00, ll€l[1,00 }-

Without loss of generality, in what follows we take for simplicity the same ellipticity
constant p both for the matrix of the coefficients A of A and P.

Proposition 4.3.3. Let v € D(A;), where A is as in (2.106)-(2.108), with coefficients
ce Whe(Q). Let P = (pi;)}j—; be a non-negative p-elliptic matriz with p;; € WhH>(Q)
and pi; = a;; on Q. Then for every n € CE(Q), n non-negative, there exists a constant

Cs = 05(’”’7 Qa M27 ||P||1,oo7 ||7]||W1,00,,U)
such that

/77|DT(t)v|pdx§/n\Dv|pdx+c5t1_5||v\|W1,1(Q) (4.23)
Q Q

holds for every t € (0,1), where § € (1/2,1) is the parameter in (3.20).

PROOF. For v € D(4;) and n € C}(Q), n > 0, we define the function F), : (0,1) —» R
by

Fyt) = /Q D\ DT (t)o] p d.

This function is differentiable since T'(t)v is regular for every ¢ > 0 and the equality

8|DT(t)v|p = (PDT (t)v, DAT (t)v)

1
|DT (t)v[p

holds for a.e. x € 2. Moreover, T'(t)v € D(A;) for every ¢ > 0 and then
AT (E = T(E)A T(f) :
1 v = B 1 B v;
this implies also that A,T(t)v € D(A;). Then, thanks to (4.21) and from the fact that

((PDT(t)v, DAIT(t)0)]
|DT'(t)v|p

< |DA,T(t)v|p,
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we can differentiate under the integral sign. Denoting by u(¢, ) the solution (T'(¢)v)(x),

we obtain
Fi(t) = d |Dulp da = / (PDu, DAu) dx
TS [Dulp
_ Z / p”D uD Dh(athku)) d
= T
ijih k=1 |Dulp
pijDjuD;(bpDpu) / pijDjuD;(cu) uD;(cu)
+ / d + dz
i ]%: 1 |D’LL| ij:l |Du|p
(Il) _ Z / psz U ZhathkU + Dhah,kDikU + Diathiku) du
i,5,h,k=1 Q |DU|P
(I2) + Z / \D i ——pi;Djuan D} u do
i,5,h, k=1 u
(Is) + Z / wa u(D by Dy + thlhu) dx
i,5,h, k=1

(14) + Z /7] p”D u(Dcu+cDu>d

i,5,h,k=1

Notice that there is a constant k = k(n, Ma, |9z, || P|lc) such that
L]+ 3] + [La] < Ellullw21(q) -

It remains to estimate Io; integrating by parts with respect to xx, we have that

Z /|Du| Di; D; wane D3 udx

i,5,h,k=1
1
(IL) = 3 Z / Dull i Djuany D3 uDypm DimuDyu d
i,7,h,k,l,m=1
(I1) + Z / Duls ————pi; Djuany D31 pm DyuDiyu dx
i,5,h,k,l,m=1
(II3) Z / D (kawD wapg + pi; Dj uDkahk> mudm
i,5,h,k=1 | U|
(114) Z / pUDk]uathmudx
i,5,h,k=1 |D |
(115) Z / D pUD uathmuDkndx
i,5,h,k=1 2 | u|
n— 1
(I16) + Z /Q |Du\pp”D uapy D3y, dH

i,7,h, k=1
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This implies the existence of a constant k = k(Mq, || P||1,00, [|7]/1,00), such that
|TT,| + |I13| + |II5] gk/Q\DQu|dx.
where M; was so defined
My = max{|laijwe.o (), [bill w2 @), lell L= @)}

Notice that for 115 we have
Z piijuath?huplmDmuDzlu = <D2uAD2u PDu, PDu>
i,j,k,l,m=1

- <P1/2D2u A D%y PY2(P'/2Dy), P1/2Du>,

and for I, we can write

n

n
2 2
E pijDijuansDiju = E plmpmJDk]u ath
ijih k=1 ij.hk;m=1

- Tr (P1/2D2u A D%y P1/2>,

where Tr denotes the trace of a matrix. Then

1 PY2Dy PY2Dy
IL+1I, = / (<P1/2D2uAD2 pl/2 >
? ! o |Dulp |Dulp * |Dulp
Tr <P1/2D2uAD2u Pl/z)) ndr <0 (4.24)

since P'/2D?u A D?u P'/? is positive definite because
<(P1/2D2uAD2u P1/2)§,§> _ <A1/2D2u PY2¢ AV2D2y P1/2§>.
Finally, for the term IIg, we notice that

n
Y piDjuanDiuv, = Z( Z ank Diu vy, ZpUD u)

W4 hok=1 i=1  h,k=1
= Z Z (Di (athhU Vk) - DhUDi(athk)> ZPUDJ'“ (4.25)
i=1 h,k=1 J=1
= (D{ADu,v), PDu) — (D(Av)Du, PDu) = —(D(Av)Du, PDu)
since P = A on 9f). Observe that the regularity of the boundary and the ellipticity of a;;

imply that there exists a constant ¢ depending on ||Alj1,0c and L (see Definition 1.5.1)
such that |D(Av)| < ¢. As a consequence, we obtain that

———npiDjuanDiuvy dH™ 1‘
z]hzl; 1/6Q |D’LL| 7

= ‘/ D(Av)Du, PDu) dH"~ 1‘ <k/ n|Du|pdH™ !
2Q |DU|P o0

IN

il | Dular=" < [ [1Dul + Dl da
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where k = k(Ms, L, u, |||, cq), and cq is introduced in (4.22).

Taking now into account that u(¢,z) satisfies (3.4) and (3.20), we have proved there
is a constant c5 such that for every t € (0,1) the inequality

d _
F(t) = a/ nDulp dz < c5t™°[[v]lwia (o).
Q

holds. Then, by integration (4.23) follows. O

In the following theorem we show the announced characterization of the space BV (€2)
in terms of the short-time behavior of || DT (t)ug|| .1 (q), analogous to (4.18). Here we may
relax the regularity assumption on the coefficients b; according to Remark 3.0.6.

Theorem 4.3.4. Assume Q C R"™ has uniformly C? boundary. Let A be as in Section
2.5 with

0y €WPS(Q), b L¥(Q)
and P be a non negative p-elliptic matriz with p;; € Cy(Q). If (T(t))i>0 is the semigroup
generated by (A1, D(Ay)) in LY(2), then, for every ug € L*(S2), the equality

lim |DT(t)uO($)|p dx = ‘DUO|p(Q)

t—0 Q

holds. In particular, ug belongs to BV (Q) if and only if the above limit is finite.

PROOF. We start first assuming that p;; € CZ(2) and considering the operator
A = div(ADu), i.e., b; = ¢ =0, i =1,...n. We denote by (A;, D(A,)) its realization in
L' (as specified in Section 2.5) and by 7' the generated semigroup. Thanks to (4.20), we
have only to prove that

limsup/Q | DT (t)uo ()| p dz < |Duo|p(2), (4.26)

t—0

which is trivially satisfied if ug € L1(Q)\ BV (£2). We then consider ug € BV (). Fix
e > 0 and consider two open neighborhoods U C V of 99 with disjoint boundaries such
that, if we take S’ = QNU and S = QNV, we get

| Dug|p(S) < €. (4.27)
Let then € C%(Q) be a function such that
0<n<1l, n=1lonsS, n=00nQ\S

and define the matrix
Py=n*A+ (1 -1nHP.
By Proposition 4.2.2 there exists a sequence
(ur)i C {v € C™(Q)NCH(Q) : (ADv,v) =0 on 9N}
={veC®(NC'(Q): (PaDv,v) =0 on 9Q} C D(A;)
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such that uy — ug in L'(Q) and

lim /|Duk|pdx:|Du0\p(Q).
k— 400 Q

Notice that since P is p-elliptic we get

/ |Dug|dz < \/ﬁ/ |Duy| pdx
Q Q
and then there exists M > 0 such that
[uk w1 < M. (4.28)

Since Q2 \ S is an open set, by lower semicontinuity we have

|[Dug|p(2\ S) < hm inf | Dug,| pdz
k—-+o0 Q\S

S Q Q\S

limsup/\Duk|pd:ﬂ< hm /|Duk|pdac—hm1nf/ |Duy| pdx
k—o00 o\S

and also

whence

< [Dug|p(R2) — [Duo|p(Q\ §) = |Duo|p(S5).

This proves that

limsup/ |Duy|pdz < |Dug|p(S); (4.29)
k—+4oco0 JS

by the p-ellipticity of A and P, we get that |{|4 < \/i|¢|p therefore the following holds:

limsup [ |Dug|adz = limsup/ (ADuy, Dug)?dx < ulimsup/ | Duy | pde,
k—+o00 JS k—+o0 J§ k—+oco JS

whence by (4.29) and (4.27)

limsup/ |Dug|adz < pe. (4.30)
k—-4o0 JS

We also notice that

€13 = (PE, &) = (Pa&, &) + (P — Pa)&.€)
= (Pa&,&) +n* (P — A)&, &) = €3, +n* (P — A)E,€)

and, since P and A are p-elliptic,

(P — A, €)] < 2ul€)® <2u°|¢)5, VEER™



91

We have then obtained that |¢|p < [£]p, + 1v/27[€]4 and as a consequence

/ | DT (t)ug| pda < / | DT (t)ug| p, dz + pv/2 / n| DT (t)u| ad.
Q Q Q

We can apply Proposition 4.3.3 to both terms in the right hand side in order to obtain,
using (4.28), that

/ |DT(t>uk|de} < / |Duk|pAdl‘ + M\/i/ 77|Duk|Adl‘ +(1+ M\/§)05Mt1_6.
Q Q Q

By definition of P4, we have that

€3, = n?leld + (1L — )¢}, VEER™,

and then
/|Duk|pAd$ S/U|Duk‘AdJJ + /\/ 1 — n?|Dug|pdx §/|Duk‘Ad$ + / |Duy| pdz.
Q Q Q S Q

We have then obtained the following estimate
/ |DT (t)ug| pda < / | Dug | pdz + (14 pv/2) / |Dug| adz + (14 pv/2)es Mt 0. (4.31)
Q Q s
Using (4.30), (4.31) and the fact that T(t)ux — T'(t)ug in L*(2) as n — 400, we get

/ |DT (t)ug| pda: §liminf/ |DT(t)uk|pdx§Iimsup/ | DT (t)uy,| pda
Q k=00 Jo k—+o0 JQ

< |Duo|p(Q) + p(1 + pv2)e + (1 + pV2)es Mt —°

and the result for P regular then follows by letting t — 0, since ¢ is arbitrary. The case

with p;; € Cp(Q) is a consequence of the approximation result given in Proposition 4.2.7.

Finally, we consider non zero coefficients b; and ¢ and Au = div(ADu)+ (B, Du) + cu
with b;,¢c € L*°(Q), i = 1,...n. Notice that the boundary operators associated with A;
and A; as in (2.110) coincide, and then the set C4(Q) defined in (4.10) is a core both
for (A1, D(A;)) and (A, D(A;)). We denote by (T'(t));>0 the semigroup generated by
(A1, D(A;)). Notice that if we define @(t) := T'(t)ug and u = T(t)uo, with ug € Ca (),
the function w := @ — u is the solution of the problem

Ow — Aw = &4 := —(B,Du) — ctii  in (0,00) x
w(0) =0 in
(ADw,v) =0 in (0,00) x Q.

¢
Thus, since w(t) = / T(t — s)Eu(s)ds, we get
0

Dw(t) = D(t —u)(t) = /0 DT (t — s)Eu(s)ds
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and then using (3.4)

t
||DT(t)u0 — DT(t)u0||L1(Q) < CQHET(t)UOHLl(Q)/ ds (432)

1
0 \/t — S
< 2c0Vt (I1Blloo | DT (t)uo | 110y + llelloc |1 T () ol 12 0))

Since ||T(t)u0\|L1(Q) — |Juollz1 (o) and limsup, g ||DT(t)u0||L1(Q) is bounded we can
conclude that lim; .o || DT'(t)ug — DT'(t)ugl|r1 (o) = 0 and consequently, for v € C4(Q2),
it follows

limsup/ | DT (t)v|p dx < limsup/ |DT(t)v|p dzx
t—0 Q t—0 Q

+lim/ |DT(t)v7DT(t)v|pdx:/ |Dvl|p da.
t—0 Q Q

The thesis then follows from the density of C4(Q2) in BVp(Q2) (see Proposition 4.2.2);
given ug € BVp(Q2), we take a sequence (uy) C C4(€2) approximating ug in P-variation.
Then, using (4.32) with wuy in place of ug and (4.31), we get

/Q |DT (t)uy| pdz < /Q |DT (t)uy| pda + /Q |DT(t)uy, — DT (t)uy| pda
<(1-+ 20VF|Bll) [ Do
+(1—&—/m/g)(l+202u\/75||B||oo)/S|Duk|Adx
+ (14 uvV2) (1 + 2copVt]| Blloo)es MY + 2¢5 /it | ¢ oo /Q |7 (t)u|da
and consequently it follows
|[Dug|p(2) < hﬁ{%lf/g | DT (t)ug| pdz < lim sup limsup/Q | DT (t)uy| pdx

t—0 k—-+oco
<Timsup {(1+ 262uv/E| Blloo) Do p(9) + (1 + 1v/2)(1 + 265/ Bl )
t—0

+ (14 pV2)(L + 2eanVE| Bloo)es M + ey v/ el o= ol s }
—[Duo| () + (1 + pv/2)e

The result then follows since € is arbitrary. O



