
Chapter 2

Generation of analytic

semigroups by elliptic

operators

2.1 Assumptions and formulation of the boundary

value problem

In this chapter Ω will denote either Rn or an open subset of Rn (n ≥ 2) with suffi-
ciently smooth boundary ∂Ω. For any x ∈ ∂Ω we denote by ν(x) the exterior unit normal
vector to ∂Ω at x ∈ ∂Ω.
We shall consider the linear second order differential operator A(x,D) with real coeffi-
cients operating on complex valued functions u(x) defined in the domain Ω

A(x,D) =
n∑

i,j=1

Di(aij(x)Dj) +
n∑
i=1

bi(x)Di + c(x)

= div(A ·D) +B ·D + c. (2.1)

The leading part of A(x,D) is denoted by A0(x,D):

A0(x,D) =
∑
i,j

aij(x)DiDj .

In what follows we assume the following conditions.

smoothness condition on Ω: Ω is uniformly regular of class C2. (2.2)

smoothness condition on A:

aij = aji ∈ C1
b (Ω) and bi, c ∈ L∞(Ω). (2.3)
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ellipticity condition on Ω: A is uniformly µ-elliptic in Ω, i.e., there exists a constant
µ ≥ 1 such that for any x ∈ Ω and ξ ∈ Rn

µ−1|ξ|2 ≤ A0(x, ξ) ≤ µ|ξ|2, (2.4)

Moreover if Ω 6= Rn, we consider some boundary conditions. These conditions are
expressed by a linear first order differential operator with real coefficients defined for
x ∈ ∂Ω:

B(x,D) =
n∑
i=1

βi(x)Di + γ(x) (2.5)

We assume the following.
smoothness condition on B:

βi, γ ∈ UC1
b (Ω), (2.6)

i.e., β, γ are differentiable on ∂Ω and the derivatives are all bounded and uniformly
continuous on ∂Ω and the uniform nontangentiality condition

inf
x∈∂Ω

∣∣∣∣∣
n∑
i=1

βi(x)νi(x)

∣∣∣∣∣ > 0 (2.7)

holds.

In the sequel the Agmon-Douglis-Nirenberg a priori estimates will be very useful.
They hold for operators with complex valued coefficients for which (2.3) holds and uni-
form ellipticity consists in requiring that there exists a constant µ ≥ 1 such that for any
x ∈ Ω and ξ ∈ Rn

µ−1|ξ|2 ≤ |A0(x, ξ)| ≤ µ|ξ|2, (2.8)

Due to the ellipticity of A, (2.8), we get that for every real vector ξ = (ξ1, . . . , ξn) 6= 0
and for every point x ∈ Ω there holds A0(x, ξ) 6= 0. Hence in particular for every linearly
independent real vectors ξ and η, the polynomial A0(x, ξ + τη) of the variable τ has no
real roots. We assume the following.
root condition: For every pair of linearly independent real vectors ξ, η the polynomial
A0(x, ξ + τη) of the variable τ has a unique root τ+

1 with positive imaginary part.

It is easy to verify that if n ≥ 3 all elliptic operators satisfy the Root Condition. Indeed
in the case ξ⊥ η, if we take for simplicity η = en, then A0(x, ξ+ τη) = A0(x, ξ′, τη) with
ξ′ = (ξ1, . . . , ξn−1), ξ′ 6= 0. We define the constant functions fη, gη : Rn−1 \ {0} → N as
follows

fη(ξ′) = #{τ ∈ C : A0(x, ξ + τη) = 0, Im τ > 0}

gη(ξ′) = #{τ ∈ C : A0(x, ξ + τη) = 0), Im τ < 0},

and we observe that since if τ is a root for ξ, η then −τ is a root for −ξ, −η we deduce
fη(ξ′) = gη(−ξ′). Moreover, if n ≥ 3 then gη(−ξ′) = gη(ξ′). In fact, the points ξ′ and
−ξ′ can be joined by a smooth simple curve γ in Rn−1 \ {0} (which is a connected set)
and the roots of the polynomial τ 7→ A0(x, γ(·)+τη) are continuous functions along γ. If
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gη were not constant along γ, the imaginary part of some roots would change sign, hence
it would vanish and give a real root, which is impossible. Therefore, fη(ξ′), gη(ξ′) and
gη(−ξ′) coincide everywhere on Rn−1 \ {0} if n ≥ 3. The general case can be recovered
by the previous one. Indeed let ξ, η ∈ Rn \{0} with ξ and η linearly independent; we can
write ξ = ξ′ + ξ′′η̂ with η̂ = η

|η| , ξ
′ 6= 0 and ξ′⊥ η̂, then A0(ξ + τη) = A0(ξ′ + τ ′η̂) with

τ ′ = ξ′′ + τ |η| and ξ′⊥ η̂. Finally we observe that fη(ξ′) = fη̂(ξ′) and gη(ξ′) = gη̂(ξ′);
thus repeating the argument above we conclude for two arbitrary linearly independent
vectors ξ, η.
Moreover, we require that the boundary conditions are expressed as before by (2.5) with
complex coefficients

βi, γ ∈ UC1
b (Ω;C) (2.9)

that must “complement” the differential equation. This condition called complementing
boundary condition consists of an algebraic criterion involving the leading parts of A and
B.

complementing condition (2.10)

Let x be an arbitrary point on ∂Ω and ν be the outward normal unit vector to ∂Ω at x. For
each vector ξ 6= 0 tangential to ∂Ω at x, let τ+

1 be the root of the polynomial A0(x, ξ+τν)
with positive imaginary part. Then the polynomial B0(x, ξ + τν) = 〈β(x), ξ + τν〉 has
to be linearly independent modulo the polynomial (τ − τ+

1 ). This means that τ+
1 cannot

be solution of B0(ξ + τν) = 0 and it is obviously satisfied if (2.7) holds.

We notice that if the coefficients of A are real and satisfy∑
i,j

aij(x)ξiξj ≥ µ|ξ|2 x ∈ Ω̄, ξ ∈ Rn

for some µ > 0, then the Root Condition is immediately satisfied. Indeed in that case the
polynomial in τ , A0(ξ + τν) has not real roots, therefore it has two conjugate complex
solutions.

Remark 2.1.1. The reason why we have considered complex valued coefficients and
introduced assumption (2.8) is the fact that we shall use the Agmon-Douglis-Nirenberg
estimates (2.13) and (2.14) with A replaced by the operator A+eiθDtt in n+1 variables
(x, t), with θ ∈ [−π/2, π/2], which satisfies (2.8) and the Root Condition too.

2.2 Basic estimates for elliptic equations

The aim of this chapter is to prove that under the assumptions listed in Section 2.1,
the realizations of A with homogeneous boundary conditions Bu = 0 in ∂Ω, are sectorial
operators in suitable Banach spaces. As a result they generate analytic semigroups in
those spaces (see Proposition 1.2.3).



32

A sufficient condition for the sectoriality of an operator is given in Proposition 1.2.7.
Here we first need some existence and uniqueness results for elliptic boundary value
problems of the type {

λu−A(·, D)u = f in Ω
B(·, D)u = 0 in ∂Ω

(2.11)

and then some resolvent estimate like (1.8).
Now we recall the a priori estimates due to Agmon, Douglis and Nirenberg that hold for
operators with complex coefficients satisfying hypothesis of Section 2.1 in Rn as well as
in regular domains. For a complete analysis of these estimates we refer to [2] and [3].
We recall them in the following theorem in a way that will be used later. We set

M = max{‖aij‖1,∞, ‖bi‖∞, ‖c‖∞}. (2.12)

Theorem 2.2.1. (Agmon-Douglis-Nirenberg)

(i) Let A(x,D) be defined as in (2.1). Suppose that aij , bi, c : Rn → C satisfy hypothe-
ses (2.3), (2.8) and the Root Condition. Then for every p ∈ (1,+∞) there exists
a strictly positive constant C depending only on p, n, µ and M such that for every
u ∈W 2,p(Rn)

‖u‖W 2,p(Rn) ≤ C
(
‖u‖Lp(Rn) + ‖A(·, D)u‖Lp(Rn)

)
. (2.13)

(ii) Let Ω be an open set in Rn with uniformly C2 boundary, and A(x,D) defined by
(2.1). Suppose that aij , bi, c : Ω → C satisfy hypotheses (2.3), (2.8) and the Root
Condition. Let in addition βi, γ satisfy (2.9) and the complementing condition. For
every u ∈ W 2,p(Ω), with 1 < p < ∞, set f = A(·, D)u, g = B(·, D)u|∂Ω. Then
there is C1 = C1(p, n, µ,M,Ω) > 0 such that

‖u‖W 2,p(Ω) ≤ C1

(
‖u‖Lp(Ω) + ‖f‖Lp(Ω) + ‖g1‖W 1,p(Ω)

)
. (2.14)

where g1 is any W 1,p extension of g to Ω.

Observe that the estimates in Theorem 2.2.1 are not true for p = 1 and p = ∞. For
this reason the theory of Lp(Ω), 1 < p <∞ cannot be rearranged to the cases L1 or L∞.
For p = ∞ this difficulty has been overcome by K. Masuda and H.B. Stewart (see [42],
[43]) using the classical Lp theory and by passing to the limit in the Lp estimates in a
suitable way.
One of the ways to solve the case p = 1 consists in using duality from L∞.
This chapter is organized as follows: in Section 2.2.1 we discuss the generation in Lp,
1 < p < ∞ for an elliptic operator of second order with homogeneous non tangential
boundary conditions. Using these results we study the same problem in L∞(Ω). Finally
in Section 2.5 we confine our attention to a particular boundary operator and we prove
sectoriality for the realization in L1 of the operator A with the homogeneous boundary
condition there specified.
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2.2.1 Analytic semigroups in Lp(Rn), 1 < p < ∞

First suppose Ω = Rn and consider the realization of A in Lp(Rn). Define

D(Ap) = W 2,p(Rn), Apu = A(·, D)u, u ∈ D(Ap), (2.15)

We start by the simplest case when aij = δij bi, c = 0. In this way the operator in (2.1)
reduces to the Laplace operator:

∆ =
n∑
i=1

Dii.

By (i) of the Theorem 2.2.1, it follows that the operator ∆ with domain W 2,p(Rn) is
closed.

Theorem 2.2.2. Let 1 < p < ∞ and consider the operator ∆ with domain given by
W 2,p(Rn). Then, there exist π

2 < ϑ0 < π and Mϑ > 0 depending on p such that
ρ(∆) ⊃ Σϑ = {λ ∈ C; λ 6= 0, |arg λ| < ϑ} and the estimate

‖(λ−∆)−1‖L(Lp(Rn)) ≤
Mϑ

|λ|
(2.16)

holds for λ ∈ Σϑ for any ϑ < ϑ0.

Proof. First we consider the case p ≥ 2. For u ∈ C∞0 (Rn), we put u∗ := ū|u|p−2

where ū denotes the complex conjugate of u. Since the function f(z) = z̄|z|p−2 is
continuously differentiable, u∗ ∈ C1

0 (Rn). By the chain rule we obtain

Dhu
∗ = |u|p−2Dhū+ (p− 2)|u|p−4ūRe (ūDhu).

Integration by parts yields

−
∫
Rn

∆u · u∗ = −
∫
Rn

n∑
h=1

(Dhhu)ū|u|p−2

=
∫
Rn

n∑
h=1

DhuDh(ū|u|p−2)

=
∫
Rn

n∑
h=1

(|u|p−2DhuDhū

+ (p− 2)|u|p−4ūDhuRe (ūDhu)).

Since
Re (|u|2DhuDhū) = (Re (ūDhu))2 + (Im (ūDhu))2,

then

−Re
∫
Rn

∆u · u∗ = (p− 1)
∫
Rn

|u|p−4
n∑
h=1

(Re (ūDhu))2

+
∫
Rn

|u|p−4
n∑
h=1

Im (ūDhu))2 =: (p− 1)A2 +B2 ≥ 0 (2.17)
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and

−Im
∫
Rn

∆u · u∗ = (p− 2)
∫
Rn

|u|p−4
n∑
h=1

Im (ūDhu)Re (ūDhu).

Now, using the Cauchy- Schwartz inequality we obtain

∫
Rn

|u|p−4
∣∣∣ n∑
h=1

Im (ūDhu)Re (ūDhu)
∣∣∣ ≤∫

Rn

|u|
p−4
2

∣∣∣Re (ūDu))
∣∣∣ |u| p−4

2

∣∣∣Im (ūDu))
∣∣∣ ≤(∫

Rn |u|p−4
n∑
h=1

(Re (ūDhu)2
) 1

2
(∫

Rn

|u|p−4
n∑
h=1

(Im (ūDhu)2
) 1

2
= AB

and so ∣∣∣Im ∫
Rn

∆u · u∗
∣∣∣ ≤ |p− 2|AB. (2.18)

If 1 < p < 2, we get the same estimates (2.17) and (2.18) by approximation, using the
functions u∗ = ū(|u|2 + δ)

p−2
2 and letting δ → 0.

Now we look for the smallest positive γ0 such that

|p− 2|AB ≤ γ0[(p− 1)A2 +B2]

for all A,B. Since for such γ0 we have that

γ0(p− 1)
A2

B2
− |p− 2|A

B
+ γ0 ≥ 0

for all A,B, then (p− 2)2 − 4(p− 1)γ2
0 ≤ 0 and so

γ0 ≥
|p− 2|

2
√
p− 1

.

Setting
∫
Rn

∆u · u∗ dx =: x+ iy, we have obtained

{
x ≤ 0
|y| ≤ γ|x| (2.19)

for γ ≥ γ0(p). Define ϑ0 = π − arctan γ0, ϑ < ϑ0 and prove that ρ(∆) ⊃ Σϑ.
Let ϑ < ϑ0 and consider λ ∈ Σϑ and u ∈ C∞0 (Rn), with ‖u‖Lp(Rn) = 1, so that
‖u∗‖Lp′ (Rn) = 1 = 〈u, u∗〉Lp,Lp′ . Then, by (2.19) we get 〈∆u, u∗〉Lp,Lp′ ∈ C \Σϑ0 , hence

‖λu−∆u‖Lp(Rn) ≥ |〈λu−∆u, u∗〉Lp,Lp′ | = |λ− 〈∆u, u∗〉Lp,Lp′ |

≥ dist(λ,C \ Σϑ0) ≥ Cϑ|λ|.

By density, we deduce

‖λu−∆u‖Lp(Rn) ≥ Cϑ|λ|‖u‖Lp(Rn) (2.20)
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for all u ∈ W 2,p(Rn). Now, using the Fourier transform we prove that λ ∈ ρ(∆). The
injectivity of λ−∆ follows from (2.20). By (2.13) and using inequality (2.20) we have

‖u‖W 2,p(Rn) ≤ c(‖u‖Lp(Rn) + ‖∆u‖Lp(Rn))

≤ c(‖u‖Lp(Rn) + |λ|‖u‖Lp(Rn) + ‖λu−∆u‖Lp(Rn))

= c((1 + |λ|)‖u‖Lp(Rn) + ‖λu−∆u‖Lp(Rn))

≤ C‖λu−∆u‖Lp(Rn) (2.21)

where the constant C depends on p, ϑ, λ. Now, inequality (2.21) and the closedness of ∆
in W 2,p(Rn) imply that (λ−∆)(W 2,p(Rn)) is closed in Lp(Rn). We have only to prove
that (λ−∆)(W 2,p(Rn)) is dense in Lp(Rn).
Consider the space S(Rn) which is dense in Lp(Rn) and prove that

∀ f ∈ S(Rn) ∃u ∈W 2,p(Rn) such that (λ−∆)u = f

Now, the solution in W 2,p(Rn) of λu−∆u = f is the function u ∈ S(Rn) whose Fourier
transform is

û =
f̂

λ+ |ξ|2

This shows that
(λ−∆)(W 2,p(Rn)) ⊇ S(Rn)

hence it is dense in Lp(Rn).

The previous theorem implies that the realization of ∆ in Lp(Rn) is a sectorial oper-
ator.

Corollary 2.2.3. Let 1 < p <∞ and λ ∈ C with Reλ > 0. Then for every f ∈ Lp(Rn)
there exists a unique u ∈W 2,p(Rn) such that

(λ−∆)u = f. (2.22)

Moreover

|λ|‖u‖Lp(Rn) + |λ| 12 ‖Du‖Lp(Rn) + ‖D2u‖Lp(Rn) ≤ c‖f‖Lp(Rn) (2.23)

where c depends on n, p.

Proof. The result can be easily obtained from the previous one. By the estimate
(2.20) and (2.21) we deduce

|λ|‖u‖Lp(Rn) ≤ C−1
θ ‖f‖Lp(Rn) (2.24)

‖D2u‖Lp(Rn) ≤ C‖f‖Lp(Rn) (2.25)

and finally using the interpolation estimate (A.1)

‖∇u‖Lp(Rn) ≤ c‖D2u‖
1
2
Lp(Rn)‖u‖

1
2
Lp(Rn) ≤ C|λ|−1/2‖f‖Lp(Rn). (2.26)

Summing up (2.24),(2.26), (2.25) and redefining the constant we get the claim.
Actually for what concerns the existence and the uniqueness of the solution of (2.22) in
Rn we state the following theorem (see for example [44] for details).
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Theorem 2.2.4. Let f ∈ Lp(Rn), then for every λ /∈ (−∞, 0] there exists u ∈W 2,p(Rn)
such that λu−∆u = f and the estimate

‖u‖W 2,p(Rn) ≤ c(n, λ)‖f‖Lp(Rn)

holds.

In the following proposition we extend (2.23) to a more general operator than the Lapla-
cian.

Proposition 2.2.5. Let 1 < p < ∞. Then, there exist ω0 ∈ R, Mp > 0 depending on
n, p, µ,M such that if Reλ ≥ ω0, then for every u ∈W 2,p(Rn) we have

|λ|‖u‖Lp(Rn) + |λ| 12 ‖Du‖Lp(Rn) + ‖D2u‖Lp(Rn) ≤Mp‖λu−A(·, D)u‖Lp(Rn) (2.27)

Proof. Let E the operator in n+ 1 variables defined by

E(x, t,D) = A(x,D) + eiθDtt (2.28)

with θ ∈ [−π/2, π/2]. It satisfies the uniform ellipticity condition (2.8) with constant
µE = µ

√
2. Indeed, it is obvious that |A0(x, ξ) + eiθη2| ≤ µ(|ξ|2 + η2) ≤ µ

√
2(|ξ|2 + η2);

for the converse inequality, we look for µE > 1 such that

|A0(x, ξ) + eiθη2| ≥ µ−1
E (|ξ|2 + η2) (2.29)

for all x ∈ Ω̄, (ξ, η) ∈ Rn ×R and for every θ ∈ [−π/2, π/2]. We observe that

|A0(x, ξ) + eiθη2| =
[
(〈Aξ, ξ〉+ η2 cos θ)2 + η4 sin2 θ

]1/2
=
[
(〈Aξ, ξ〉)2 + η4 + 2η2〈Aξ, ξ〉 cos θ

]1/2
≥ (

1
µ2
|ξ|4 + η4)1/2

Since we look for a µE such that (2.29) holds, if

(
1
µ2
|ξ|4 + η4)1/2 ≥ µ−1

E (|ξ|2 + η2)

or equivalently using that 2|ξ|2η2 ≤ |ξ|4 + η4

2
µ2
E
(|ξ|4 + η4) ≤ 1

µ2
|ξ|4 + η4 (2.30)

holds for all (ξ, η) ∈ Rn ×R we conclude. Now, it is easy to see that if µE satisfies
2
µ2
E
− 1
µ2

≤ 0

2
µ2
E
− 1 ≤ 0
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that is if µE ≥ µ
√

2, then (2.30) is proved.
Let η ∈ C∞c (R) be such that η ≡ 1 in [− 1

2 ,
1
2 ] and supp η ⊆ [−1, 1]. For every u ∈

W 2,p(Rn) and r > 0 we set

v(t, x) = η(t)eirtu(x) t ∈ R, x ∈ Rn. (2.31)

Then
E v = η(t)eirt(A− eiθr2)u+ ei(θ+rt)(η′′ + 2irη′)u.

Now, we can prove (2.27). Estimate (2.13), applied to the function v implies that there
exists C = C(n, p, µ,M) such that

‖v‖W 2,p(Rn+1) ≤ C
[
‖v‖Lp(Rn+1) + ‖Ev‖Lp(Rn+1)

]
≤ C

[
‖u‖Lp(Rn)

+ ‖ηeirt(A− eiθr2)u+ ei(θ+rt)(η′′ + 2irη′)u‖Lp(Rn+1)

]
≤ C

[
‖u‖Lp(Rn) + ‖(A− eiθr2)u‖Lp(Rn) + (1 + 2r)‖u‖Lp(Rn)

]
≤ C

[
(1 + r)‖u‖Lp(Rn) + ‖(A− eiθr2)u‖Lp(Rn)

]
. (2.32)

On the other hand, since η ≡ 1 in [− 1
2 ,

1
2 ], then

‖v‖pW 2,p(Rn+1) ≥‖v‖
p

W 2,p(Rn×]− 1
2 ,

1
2 [ )

=
∫ 1

2

− 1
2

∫
Rn

∑
|α|≤2

|Dα(eirtu(x))|pdxdt =

=
∫
Rn

[
(1 + rp + r2p)|u|p + (1 + 2rp)

n∑
j=1

|Dju|p +
n∑

j,k=1

|Djku|p
]
dx

≥ r2p‖u‖pLp(Rn) + rp‖Du‖pLp(Rn) + ‖D2u‖pLp(Rn). (2.33)

Taking into account (2.32), it follows

r2‖u‖Lp(Rn) + r‖Du‖Lp(Rn) + ‖D2u‖Lp(Rn)

≤ 3‖v‖W 2,p(Rn+1) ≤ 3C
[
(1 + r)‖u‖Lp(Rn) + ‖(A− eiθr2)u‖Lp(Rn)

]
(2.34)

where C is like in (2.32). We can select r sufficiently large such that r2− 3C(1+ r) ≥ r2

2

we get

1
2
r2‖u‖Lp(Rn) + r‖Du‖Lp(Rn) + ‖D2u‖Lp(Rn) ≤ C‖(A− eiθr2)u‖Lp(Rn) (2.35)

Taking λ = eiθr2 we get (2.27) with Mp = 6C.

Now, by using the continuity method (see Theorem 1.5.3) we are able to prove exis-
tence and uniqueness for the solution of

λu−Au = f ∈ Lp(Rn)

for λ ∈ C with Reλ large enough.
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Theorem 2.2.6. Let 1 < p < ∞. There exist ω̃0 ∈ R, C > 0 depending on n, p, µ,M

such that if Reλ ≥ ω̃0, then for every f ∈ Lp(Rn)

λu−Au = f

has a unique solution u ∈W 2,p(Rn) and the following estimates hold

‖(λ−Ap)−1‖L(Lp(Rn)) ≤
C

|λ|
; (2.36)

‖∇(λ−Ap)−1‖L(Lp(Rn)) ≤
C

|λ| 12
; (2.37)

‖D2(λ−Ap)−1‖L(Lp(Rn)) ≤ C. (2.38)

Proof. We consider the Banach spaces

X = W 2,p(Rn), Y = Lp(Rn)

and the operators

L0 = λ−∆, L1 = λ−A, Lt = λ−At := λ− [(1− t)∆ + tA].

We can observe that At satisfies (2.4) with µt ≥ µ and the constant in (2.12) for At,
Mt ≤ (1 ∨M).
Moreover, by Corollary 2.2.3 we know that the operator L0 is invertible for Reλ > 0,
and by the Proposition 2.2.5 applied to the operator At := (1 − t)∆ + tA we get that
there exist ω0 ∈ R and Mp depending only on n, p, µ,M, λ such that for every Reλ ≥ ω0

and t ∈ [0, 1],
‖u‖W 2,p(Rn) ≤Mp‖(λ−At)u‖Lp(Rn).

Since the hypotheses of Theorem 1.5.3 are satisfied we get the invertibility of the operator
L1 = λ−A for Reλ ≥ ω̃0 := sup{ω0, 0}.
The estimates (2.36), (2.37) and (2.38), are immediate consequences of Proposition 2.2.5.

In view of Theorem 2.2.6 and Proposition 1.2.7 we have shown that the operator Ap
defined in (2.15) is sectorial.

2.2.2 Lp-estimates on domains

In this section Ω will be either a smooth open subset of Rn or the half space Rn
+. We

suppose that A, B satisfy assumption of Section 2.1. In this case we define

D(ABp ) ={u ∈W 2,p(Ω); B(·, D)u = 0 in ∂Ω},
ABp u = A(·, D)u, u ∈ D(ABp ). (2.39)
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ABp is the realization in Lp(Ω) of A(·, D) with homogeneous oblique boundary condition.
In order to prove that ABp is sectorial we prove that its resolvent set contains a complex
half plane and the resolvent estimate (1.3) holds.
Here also we start with the simplest case of the Laplacian in the half space Rn

+. The
crucial points are

(i) to show an a-priori estimate for ABp ,

(ii) to solve the Neumann problem in Rn
+.

By means of the continuity method we deduce existence and uniqueness in Rn
+ for the

problem related to A with a boundary operator like B. Finally, using the regularity of
the boundary ∂Ω, we deduce an analogous result in the domain Ω.

We need to prove an estimate like (2.27) for the resolvent of the operator ABp as next
proposition states.

Proposition 2.2.7. Let Ω be an open set with uniformly C2 boundary. Then there exist
ω1 ∈ R, Mp > 0, depending on n, p, µ,M,Ω, such that if Reλ ≥ ω1, then for every
u ∈W 2,p(Ω) we have, setting g = B(·, D)u|∂Ω,

|λ|‖u‖Lp(Ω) + |λ| 12 ‖Du‖Lp(Ω) + ‖D2u‖Lp(Ω) ≤

Mp‖λu−A(·, D)‖Lp(Ω) + |λ|1/2‖g1‖Lp(Ω) + ‖Dg1‖Lp(Ω) (2.40)

where g1 is any extension of g belonging to W 1,p(Ω).

Proof. The proof of this result can be obtained as in Proposition 2.2.5, using now
estimate (2.14) instead of (2.13) in Ω ×R. Let g1 be any regular extension to Ω of the
trace (B(·, D)u)|∂Ω. Then (2.32) has to be replaced by

‖v‖W 2,p(Ω×R) ≤ C1

(
‖v‖Lp(Ω×R) + ‖Ev‖Lp(Ω×R) + ‖ηeirtg1‖W 1,p(Ω×R)

)
≤ C

(
(r + 1)‖u‖Lp(Ω) + ‖(A− eiθr2)u‖Lp(Ω)

+ (r + 1)‖g1‖Lp(Ω) + ‖Dg1‖Lp(Ω)

)
, (2.41)

where C = C(n, p, µ,M). Accordingly, (2.34) has to be replaced by

r2‖u‖Lp(Ω) + r‖Du‖Lp(Ω) + ‖D2u‖Lp(Ω)

≤ 3‖v‖W 2,p(Ω×R) ≤ 3C
[
(1 + r)‖u‖Lp(Ω) + ‖(A− eiθr2)u‖Lp(Ω)

+ (r + 1)‖g1‖Lp(Ω) + ‖Dg1‖Lp(Ω)

]
(2.42)

As before taking λ = eiθr2 with r sufficiently large such that 3C(1 + r) ≤ r2

2 we get
(2.40).

Proposition 2.2.8. Let 1 < p <∞. Then there exists ω2 ∈ R depending on n, p, such
that if Reλ > ω2 and f ∈ Lp(Rn

+) the problem λu−∆u = f in Rn
+

∂u

∂xn
= 0 in ∂Rn

+

(2.43)



40

has a unique solution u ∈ W 2,p(Rn
+). Moreover there exists a constant c(λ) = c(n, p, λ)

such that
‖u‖W 2,p(Rn

+) ≤ c(λ)‖f‖Lp(Rn
+). (2.44)

Proof. Uniqueness and (2.44) are consequences of Proposition 2.2.7. Concerning
the existence, we consider the even extension of f with respect to the last variable

f̃(x′, xn) =

{
f(x′, xn) xn ≥ 0

f(x′,−xn) xn < 0

By Theorem 2.2.2, for Reλ > 0 there exists a unique solution ũ ∈ W 2,p(Rn) such that
λũ −∆ũ = f̃ . Now, it is easy to verify that the function u(x′, xn) := ũ(x′,−xn) solves
the elliptic problem λu−∆u = f̃ in Rn, and, by uniqueness, u = ũ, that is, ũ is even in
xn and so ∂ũ

∂xn
(x′, 0) = 0. Therefore for Reλ > sup{ω1, 0} =: ω2, the restriction of ũ in

Rn
+ is the unique solution of (2.43).

The following theorem extends results of existence and uniqueness of problem (2.43) to
a problem where A replaces the Laplacian and more general oblique boundary conditions
are considered.

Theorem 2.2.9. Let 1 < p < ∞. We assume that βi, γ ∈ UC1
b (R

n
+) and that the

uniform non tangentiality condition

inf
x∈∂Rn

+

|〈β(x), en〉| > 0 (2.45)

holds. Then there exists ω3 ∈ R depending on n, p, µ such that for every f ∈ Lp(Rn
+)

and Reλ > ω3 the problem  λu−Au = f in Rn
+

∂u

∂β
+ γu = 0 in ∂Rn

+

(2.46)

has a unique solution u ∈W 2,p(Rn
+).

Proof. We set

X = W 2,p(Rn
+) Y = Lp(Rn

+)×W 1,p(Rn−1)

and consider the operators Ls : X → Y so defined

Lsu :=
(
λu− [(1− s)∆u+ sAu], (1− s)

∂u

∂ν
+ s(γu+

∂u

∂β
)
)
, s ∈ [0, 1],

where ν is the exterior unit normal vector to the domain, that is ν = −en. We notice
that

(1− s)
∂u

∂ν
+ s

∂u

∂β
=
∂u

∂τ
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with τ = (1−s)ν+sβ satisfies (2.45) independently of s. Moreover As = (1−s)∆u+sAu
satisfies (2.4) with µs ≥ µ and Ms ≤ (1∨M), therefore we can ignore the dependence of
those constants by s. Hence in (2.40) the constant Mp can be chosen independently by
s and the estimate

‖Lsu‖Y ≥M−1
p ‖u‖X

holds for every s ∈ [0, 1]. By Proposition 2.2.8, L0 is surjective, therefore by Theorem
1.5.3, L1 is surjective too.

The hypothesis of smoothness of the domain suggests to go back by means of local
charts to balls or half balls of Rn and to apply the results obtained before in order to
get the same result in Ω as the next theorem states.

Theorem 2.2.10. Let Ω, A and B be as in (2.1)-(2.7). Then there exists ω4 depending
on n, p, µ,Ω such that if Reλ ≥ ω4 and f ∈ Lp(Ω), the problem{

λu−A(·, D)u = f in Ω
B(·, D)u = 0 in ∂Ω

(2.47)

has a unique solution u ∈W 2,p(Ω). Moreover there exists C = C(n, p, µ,M,Ω) > 0 such
that

|λ|‖u‖Lp(Ω) + |λ| 12 ‖Du‖Lp(Ω) + ‖D2u‖Lp(Ω) ≤ C‖f‖Lp(Ω). (2.48)

Proof. Observe that if we prove the existence of a solution of (2.47) then uniqueness
and estimate (2.48) follow immediately from Proposition 2.2.7. Indeed the estimate

|λ|‖u‖Lp(Ω) ≤M1‖λu−Au‖Lp(Ω)

yields the injectivity of λ − ABp . Thus, we have only to prove the surjectivity of the
operator λ−ABp .
By the regularity of the boundary ∂Ω we can consider a partition of unity {(η2

h, Uh)}h∈N

such that supp ηh ⊂ Uh,
∑∞
h=0 η

2
h(x) = 1 for every x ∈ Ω, 0 ≤ ηh ≤ 1 and ‖ηh‖W 2,∞ ≤ cη

for every h ∈ N. Moreover let (Uh)h∈N be such that U0 ⊂⊂ Ω, Uh for h ≥ 1 is a ball
such that {Uh}h≥1 is a covering of ∂Ω and {Uh}h∈N is a covering of Ω with bounded
overlapping, that is, there is κ > 0 such that∑

h∈N

χUh
(x) ≤ κ, ∀x ∈ Ω. (2.49)

Moreover there exist coordinate transformations ϕh : Uh → B(0, 1), C2 diffeomorphisms,
such that

ϕh(Uh ∩ Ω) = B+(0, 1)

ϕh(Uh ∩ ∂Ω) = B(0, 1) ∩ {xn = 0}.

Moreover, all the coordinate transformations ϕh and their inverses are supposed to have
uniformly bounded derivatives up to the second order,

sup
h∈N

∑
1≤|α|≤2

(
‖Dαϕh‖∞ + ‖Dαϕ−1

h ‖∞
)
≤ c (2.50)
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Let f ∈ Lp(Ω); then we can write f =
∑∞
h=0 η

2
hf. We notice that η0f ∈ Lp(Rn),

supp (η0f) ⊆ U0. Thus if we extend aij , bi and c to the whole space Rn in such a way
that their qualitative properties are preserved, to the extension Ã we can apply the
Theorem 2.2.6. Hence there exists ω̃0 ∈ R such that for Reλ ≥ ω̃0 the operator λ− Ã is
invertible in Lp(Rn). Therefore if R(λ) : Lp(Rn) → W 2,p(Rn) denotes the resolvent of
the operator Ãp in Rn, we can define

R0(λ)f := η0R(λ)(η0f).

Then supp R0(λ)f ⊆ U0 and R0(λ) : Lp(Ω) →W 2,p(Ω) and

(λ−A)R0(λ)f = (λ−A)(η0R(λ)(η0f))

= η0(λ−A)R(λ)(η0f) + ((λ−A)η0I + η0(λ−A)) (R(λ)(η0f))

= η2
0f + [λ−A, η0]R(λ)(η0f)

where [X,Y ] = XY − Y X is the commutator of X and Y . Letting

Sη0(λ) := [λ−A, η0I]R(λ)η0

we can write
(λ−A)R0(λ)f = η2

0f + Sη0(λ)f.

It is immediate to verify that [λ−A, η0I]g = −[A, η0I]g. Moreover

−[A, η0I]g = −2
N∑

h,k=1

ahkDhη0Dkg − g(
n∑

i,j=1

(Di(aijDjη0) + biDiη0)

If we define B0 = [λ − A, η0I], we observe that B0 is at most a first order differential
operator whose coefficients depend on those of A and the function η0. We have

‖B0g‖Lp(Ω) ≤ C(M, cη)‖g‖W 1,p(Ω). (2.51)

Hence, using (2.51) and estimates (2.36), (2.37), we get

‖Sη0(λ)f‖Lp(Ω) = ‖B0(λ−A)−1(η0f)‖Lp(Ω)

≤ C(M, cη)‖(λ−A)−1(η0f)‖W 1,p(Ω)

≤ C√
|λ|
‖η0f‖Lp(Ω) (2.52)

where C = C(n, p, µ,M, cη,Ω) e Reλ ≥ ω̃0. So for Sη0(λ) we get the following estimate

‖Sη0(λ)‖L(Lp(Ω)) ≤ C|λ|−1/2.

Now, we consider the case h ≥ 1. Let

vh(y) := (ηhf)(ϕ−1
h (y)) =: Th(ηhf)(y)

then vh ∈ W 2,p(Rn
+). We denote by Âh the operator in Rn

+ determined by the change
of variables given by ϕh

Âhw := div(ÂhDw) + 〈B̂h, Dw〉+ ĉhw (2.53)
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defined by the coefficients (here for Â and its coefficients we omit the index h to simplify
the notations)

Âh(y) :=
(
Dϕh

)
(ϕ−1
h (y)) ·A(ϕ−1

h (y)) ·
(
Dϕh

)t(ϕ−1
h (y))

(B̂h(y))l :=Tr
[(
Dϕh

)
(ϕ−1
h (y)) ·A(ϕ−1

h (y)) ·H l(ϕ−1
h (y)) ·

(
Dϕ−1

h

)t(y)]
+ Tr

[(
Dϕh

)
(ϕ−1
h (y)) ·Gj(y)

](
Dϕh

)t
jl

(ϕ−1
h (y))− ∂

∂yj

[
âjl(y)

]
+
[(
Dϕh

)
(ϕ−1
h (y)) ·B(ϕ−1

h (y))
]
l

ĉh(y) :=c(ϕ−1
h (y))

whereH l
ki = D2

ki(ϕh)l and Gjki = Dkaij(ϕ−1
h (y)). We remark that A(ηhu)(x) = Âhvh(y).

For what concerns the boundary condition we get

B(ηhu)(x) = β(x) ·D(ηhu)(x) + γ(x)(ηhu)(x)

=
[(
Dϕh

)
(ϕ−1
h (y)) · β(ϕ−1

h (y))
]
(Dvh)(y) ·D(ηhu)(x) + γ(ϕ−1

h (y))vh(y)

=
∂vh

∂β̂
(y) + γ̂vh(y) = B̂hvh(y)

where β̂(y) =
[(
Dϕh

)
(ϕ−1
h (y)) ·B(ϕ−1

h (y))
]

and Dϕh denotes the Jacobian matrix of ϕh

and γ̂(y) = γ(ϕ−1
h (y)). Now, since β is not tangent to ∂Ω, β̂ is not tangent to Rn

+. We
define

Rh(λ)f := T−1
h

(
Th(ηh)(λ− Âh)−1Th(ηhf)

)
,

where (λ− Âh)−1 is the resolvent of Âh in Rn
+ with the boundary condition B̂hvh = 0.

Then Rh(λ) : Lp(Ω) → W 2,p(Ω) with BRh(λ)f = 0 in ∂Ω and supp (Rh(λ)f) ⊂ Uh. We
get

(λ−A)Rh(λ)f = η2
hf + Sηh

(λ)f

where Sηh
(λ) = T−1

h

(
[λ− Âh, Th(ηh)](λ− Âh)−1(Th(ηhf))

)
.

As before for Reλ sufficiently large

‖Sηh
(λ)f‖Lp(Ω) ≤ c(n, p, µ,M,Ω, cη)|λ|−1/2‖ηhf‖Lp(Ω) (2.54)

Finally, letting
V (λ) =

∑
h∈N∪{0}

Rh(λ) : Lp(Ω) →W 2,p(Ω)

observe that BV (λ)f = 0 in ∂Ω and

(λ−A)V (λ)f =
∞∑
h=0

η2
hf +

∞∑
h=0

Sηh
(λ)f = f +

∞∑
h=0

Sηh
(λ)f.

Hence

(λ−A)V (λ) : Lp(Ω) → Lp(Ω) and (λ−A)V (λ) = I +
∞∑
h=0

Sηh
(λ)
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Now, let observe that we can select λ with Reλ sufficiently large such that

‖
∞∑
h=0

Sηh
(λ)‖L(Lp(Ω)) ≤

1
2
, (2.55)

indeed, since each Sηh
has support contained in Uh and the covering {Ui}i has bounded

overlapping (2.49), then

‖
∞∑
h=0

Sηh
(λ)f‖Lp(Ω) ≤

∞∑
i=0

∫
Ui

|
∞∑
h=0

Sηh
(λ)f |p dx

≤ c√
|λ|

∞∑
i=0

∫
Ui

|f |p dx ≤ c√
|λ|
‖f‖Lp(Ω)

where c = c(M, cη, κ,Ω). Then, (2.55) ensures that for Reλ sufficiently large, the opera-
tor I +

∑∞
h=0 Sηh

(λ) is invertible in Lp(Ω) with inverse W (λ) : Lp(Ω) → Lp(Ω). Hence,
since (λ−A)V (λ)W (λ) = I in Lp(Ω) and u = V (λ)W (λ)f ∈W 2,p(Ω) is the solution of
(2.47) for Reλ large enough.

2.3 Generation of analytic semigroup in L∞(Ω) and in

the space C(Ω)

Henceforth Ω will be a domain with uniformly C2 boundary and we set, for x0 ∈ Rn

and r > 0,
Ωx0,r = Ω ∩B(x0, r). (2.56)

Our aim is to prove that the realization AB∞ of A in L∞ with homogeneous oblique
boundary conditions as in (2.5)-(2.7) is a sectorial operator. In order to reach this
we need that ρ(AB∞) contains an half plane and that an estimate like |λ|‖u‖L∞(Ω) ≤
c‖λu−Au‖L∞(Ω) hold for Reλ large, λ ∈ ρ(AB∞). An important tool for the proof of the
resolvent estimate in L∞ is given by the following lemma in which a Caccioppoli type
inequality in the Lp norm is stated.

Lemma 2.3.1. Let p > 1 and u ∈W 2,p
loc (Ω). For every λ with Reλ ≥ ω1 (ω1 is given in

Proposition (2.2.7)), set f = λu − Au and g = Bu|∂Ω. Then there exists C1 depending
only by n, p, µ,M and Ω such that for every x0 ∈ Ω, r ≤ 1, α ≥ 1,

|λ|‖u‖Lp(Ωx0,r) + |λ| 12 ‖Du‖Lp(Ωx0,r) + ‖D2u‖Lp(Ωx0,r)

≤ C1

{
‖f‖Lp(Ωx0,(α+1)r) + (|λ|1/2 +

1
αr

)‖g1‖Lp(Ωx0,(α+1)r) + ‖Dg1‖Lp(Ωx0,(α+1)r)

+
1
α

[( 1
r2

+
|λ|1/2

r

)
‖u‖Lp(Ωx0,(α+1)r) + r−1‖Du‖Lp(Ωx0,(α+1)r)

]}
(2.57)

where g1 is any extension to Ω of Bu|∂Ω of class W 1,p
loc .
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Proof. Let θ0 : Rn → R be a smooth function such that θ0 = 1 in B(0, r),
supp θ0 ⊂ B(0, (α+ 1)r) with

‖θ0‖L∞(Rn) + αr‖Dθ0‖L∞(Rn) + α2r2‖D2θ0‖L∞(Rn) ≤ K

where K does not depend on α and r. We fix x0 ∈ Ω, we set θ(x) = θ0(x− x0). Define

v(x) = θ(x)u(x), x ∈ Ω.

then v satisfies the following equation

λv −A(·, D)v = θf − 2
∑
i,j

aijDiθDju− u
(∑

ij

Di(aijDjθ)−
n∑
i=1

biDiθ
)

=: f ′ (2.58)

and the following boundary condition

Bv = θg + u
n∑
i=1

βiDiθ in ∂Ω

Now, since Reλ ≥ ω1 and u and v coincide in Ωx0,r, using Proposition 2.2.7 we get

|λ|‖u‖Lp(Ωx0,r) + |λ| 12 ‖Du‖Lp(Ωx0,r) + ‖D2u‖Lp(Ωx0,r)

≤ |λ|‖v‖Lp(Ω)|λ|
1
2 ‖Dv‖Lp(Ω) + ‖D2u‖Lp(Ω)

≤Mp(‖f ′‖Lp(Ω) + |λ|1/2‖θg1 + u
n∑
i=1

βiDiθ‖Lp(Ω)

+ ‖D(θg1) +D(u
n∑
i=1

βiDiθ)‖Lp(Ω)). (2.59)

Set C0 = max
i,j

‖aij‖W 1,∞(Ω) + max
i
‖bi‖L∞(Ω).

Then

‖f ′‖Lp(Ω) ≤ ‖f‖Lp(Ωx0,(α+1)r) + C0K
( 2
αr
‖Du‖Lp(Ωx0,(α+1)r)

+
1

α2r2
‖u‖Lp(Ω(x0,(α+1)r)) +

1
αr
‖u‖Lp(Ωx0,(α+1)r)

)
. (2.60)

Moreover

|λ|1/2‖u
n∑
i=1

βiDiθ‖Lp(Ω) + ‖D(u
n∑
i=1

βiDiθ)‖Lp(Ω)

≤ |λ|1/2
n∑
i=1

‖βi‖∞
K

αr
‖u‖Lp(Ωx0,(α+1)r)

+
N∑
i=1

(
‖Dβi‖∞

K

αr
+ ‖βi‖∞

K

α2r2

)
‖u‖Lp(Ωx0,(α+1)r)

+
n∑
i=1

‖βi‖∞
K

αr
‖Du‖Lp(Ωx0,(α+1)r)

≤ CK

α

[( |λ|1/2
r

+
2
r2

)
‖u‖Lp(Ωx0,(α+1)r) +

1
r
‖Du‖Lp(Ωx0,(α+1)r)

]
(2.61)
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where C =
∑n
i=1 ‖βi‖C1(Ω), and

|λ|1/2‖θg1‖Lp(Ω) + ‖D(θg1)‖Lp(Ω)

≤ |λ|1/2‖g1‖Lp(Ωx0,(α+1)r) +
K

αr
‖g1‖Lp(Ωx0,(α+1)r) + ‖Dg1‖Lp(Ωx0,(α+1)r) (2.62)

Taking into account that r ≤ 1 and α ≥ 1, replacing (2.60), (2.61) and (2.62) in (2.59)
we get the claim.

As a consequence we get the resolvent estimate as the following theorem states.

Theorem 2.3.2. Let p > n. Then there exists K > 0 depending on n, p, µ,M,Ω, such
that for every λ ∈ C with Reλ ≥ Λ1

p = ω1 ∨ 1 (ω1 is given in Proposition 2.2.7) and for
every u ∈ C1

b (Ω) ∩W 2,p
loc (Ω)

|λ|‖u‖L∞(Ω) + |λ|1/2‖Du‖L∞(Ω) + |λ|n/2p sup
x0∈Ω

‖D2u‖Lp(Ω
x0,|λ|−1/2 )

≤ K
(
|λ|n/2p sup

x0∈Ω

‖λu−Au‖Lp(Ω
x0,|λ|−1/2 )

+ |λ|1/2‖g1‖L∞(Ω) + |λ|n/2p sup
x0∈Ω

‖Dg1‖Lp(Ω
x0,|λ|−1/2 )

)
, (2.63)

where g1 is any extension of g = Bu|∂Ω belonging to W 1,p
loc . Moreover, there is K̃ > 0

such that if Au ∈ L∞(Ω) and Bu|∂Ω ∈ C1(∂Ω), then

|λ|‖u‖L∞(Ω) + |λ|1/2‖Du‖L∞(Ω) + |λ|n/2p sup
x0∈Ω

‖D2u‖Lp(Ω
x0,|λ|−1/2 )

≤ K̃
(
‖λu−Au‖L∞(Ω) + |λ|1/2‖Bu‖C(∂Ω) + ‖Bu‖C1(∂Ω)

)
. (2.64)

Proof. Let x0 ∈ Ω, |λ| ≥ 1, Reλ ≥ ω1 and r = |λ|− 1
2 ; then using the Sobolev

inequality (i) of Theorem 1.5.2 we get

|λ|‖u‖L∞(Ωx0,r) + |λ| 12 ‖Du‖L∞(Ωx0,r) + |λ|
n
2p ‖D2u‖Lp(Ωx0,r)

≤ (2C + 1)|λ|
n
2p

(
|λ|‖u‖Lp(Ωx0,r) + |λ| 12 ‖Du‖Lp(Ωx0,r) + ‖D2u‖Lp(Ωx0,r)

)
.

Now, using Lemma 2.3.1, we get, for every α ≥ 1,

|λ|
n
2p

(
|λ|‖u‖Lp(Ωx0,r) + |λ| 12 ‖Du‖Lp(Ωx0,r) + ‖D2u‖Lp(Ωx0,r)

)
≤ C1|λ|

n
2p [‖f‖Lp(Ωα) + |λ|1/2

(
1 +

1
α

)
‖g1‖Lp(Ωα)

+ ‖Dg1‖Lp(Ωα) +
2
α

(
|λ|‖u‖Lp(Ωα) + |λ|1/2‖Du‖Lp(Ωα)

)
≤ C(|λ|

n
2p ‖f‖Lp(Ωα) + ω1/p

n (α+ 1)n/p|λ|1/2‖g1‖L∞(Ωα)

+ |λ|
n
2p ‖Dg1‖Lp(Ωα) + (

ω
1/p
n (α+ 1)n/p

α
)
(
|λ|‖u‖L∞(Ω) + |λ|1/2‖Du‖L∞(Ω)

)
)

(2.65)
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where Ωα = Ω ∩Bα(x0) = Ω ∩B(x0, (α+ 1)|λ|−1/2). Therefore

|λ|‖u‖L∞(Ωx0,r) + |λ| 12 ‖Du‖L∞(Ωx0,r) + |λ|
n
2p ‖D2u‖Lp(Ωx0,r)

≤ C[|λ|
n
2p ‖f‖Lp(Ωα) + ω1/p

n (α+ 1)n/p|λ|1/2‖g1‖L∞(Ωα)

+ |λ|
n
2p ‖Dg1‖Lp(Ωα) + (

ω
1/p
n (α+ 1)n/p

α
)
(
|λ|‖u‖L∞(Ωα) + |λ|1/2‖Du‖L∞(Ωα)

)
(2.66)

where C is a constant depending on p, n, µ,Ω. Taking the supremum over x0 ∈ Ω of the
three addenda on the left hand side of (2.66) and summing up we get

|λ|‖u‖L∞(Ω) + |λ|1/2‖Du‖L∞(Ω) + |λ|
n
2p sup
x0∈Ω

‖D2u‖Lp(Ω
x0,|λ|−1/2 )

≤ C
(
|λ|

n
2p sup
x0∈Ω

‖f‖Lp(Ωα) + ω
1
p
n

(α+ 1)
n
p

α
(|λ|‖u‖L∞(Ω) + |λ| 12 ‖Du‖L∞(Ω))

+ ω1/p
n (α+ 1)n/p|λ|1/2‖g1‖L∞(Ω) + |λ|

n
2p sup
x0∈Ω

‖Dg1‖Lp(Ωα))

Taking α sufficiently large in such a way that

Cω
1
p
n

(α+ 1)
n
p

α
≤ 1

2
,

we obtain

|λ|‖u‖L∞(Ω) + |λ| 12 ‖Du‖L∞(Ω) + |λ|
n
2p sup
x0∈Ω

‖D2u‖Lp(Ω
x0,|λ|−1/2 )

≤ 2C(|λ|
n
2p sup
x0∈Ω

‖f‖Lp(Ωα) + |λ|1/2‖g1‖L∞(Ω) + |λ|
n
2p sup
x0∈Ω

‖Dg1‖Lp(Ωα))

Finally we can obtain (2.63) covering each ball Bα(x0) with a finite number of balls with
radius |λ|− 1

2 .
To prove (2.64) we use (2.63), which implies

|λ|‖u‖L∞(Ω) + |λ|1/2‖Du‖L∞(Ω) + |λ|n/2p sup
x0∈Ω

‖D2u‖Lp(Ω
x0,|λ|−1/2 )

≤ K
[
ω1/p
n

(
‖λu−Au‖L∞(Ω) + ‖Dg1‖L∞(Ω)

)
+ |λ|1/2‖g1‖L∞(Ω)

]
Finally, choosing g1 = E(Bu∂Ω), where E ∈ L(C(∂Ω), C(Ω)) ∩ L(C1(∂Ω), C1(Ω)) is an
extension operator we get the claim.

Next theorem, together with the resolvent estimate (2.64), is sufficient to prove the
sectoriality of the realization of A in L∞(Ω) so defined{

D(AB∞) = {u ∈
⋂
p≥1W

2,p
loc (Ω); u, Au ∈ L∞(Ω), Bu|∂Ω = 0},

AB∞u = Au.

Theorem 2.3.3. The operator AB∞ : D(AB∞) → L∞(Ω) is sectorial. Moreover, D(AB∞) ⊂
C1,α(Ω), for every α ∈]0, 1[.
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Proof. Fix p > n. Let Λ0 = infp>n Λ1
p; then we prove that the resolvent set of AB∞

contains the half plane {λ ∈ C; Reλ > Λ0}. First we show that the ρ(AB∞) contains the
half plane {Reλ ≥ Λ1

p}. For any f ∈ L∞(Ω) and k ∈ N, let ψk be a cut-off function such
that

0 ≤ ψk ≤ 1, ψk ≡ 1 in B(0, k), ψk ≡ 0 outside B(0, 2k).

We consider fk = ψkf . Now, if Reλ > Λ1
p, then, by Theorem 2.2.10, the problem{

λuk −Auk = fk in Ω
Buk = 0 in ∂Ω

(2.67)

has a unique solution uk ∈W 2,p(Ω) and ‖uk‖W 2,p(Ω) ≤ C‖fk‖Lp(Ω) where C is a constant
depending on λ, n, p,M,Ω and µ. In particular, by the Sobolev embedding theorem (see
Theorem 1.5.2), uk ∈ C1

b (Ω), therefore using (2.64) we get

‖uk‖C1(Ω) + sup
x0∈Ω

‖D2uk‖Lp(Ω
x0,|λ|−1/2 ) ≤ K(λ)‖fk‖L∞(Ω) ≤ K(λ)‖f‖L∞(Ω). (2.68)

Therefore, {uk}k is bounded in C1(Ω), so that there exists a subsequence converging
uniformly on each compact subset of Ω to a function u ∈ C(Ω) ∩ Lip(Ω) such that

‖u‖L∞(Ω) + [u]Lip(Ω) ≤ K(λ)‖f‖L∞(Ω). (2.69)

Now, we show that u ∈W 2,p
loc (Ω) and that it solves{

λu−Au = f in Ω
Bu = 0 in ∂Ω

Let B(x0, R) be the closed ball with x0 ∈ Ω and R ≥ 4|λ|−1/2, then by (2.68) we know
that {uk}k is bounded in W 2,p(Ωx0,R), so that the limit function u is in W 2,p(Ωx0,R).
Since x0 and R are arbitrary, u ∈W 2,p

loc (Ω). Moreover there exists a subsequence {uφ(k)}k
converging to u in W 1,p(Ωx0,R), and for h, k sufficiently large{

λ(uφ(h) − uφ(k))−A(uφ(h) − uφ(k)) = 0 in Ωx0,R

B(uφ(h) − uφ(k)) = 0 in ∂Ω ∩Bx0,R

Now, applying Lemma 2.3.1 to the function uφ(h) − uφ(k), we get

‖uφ(h) − uφ(k)‖W 2,p(Ω
x0,|λ|−1/2 ) ≤ C(λ)‖uφ(h) − uφ(k)‖W 1,p(Ω

x0,2|λ|−1/2 )

≤ C(λ)‖uφ(h) − uφ(k)‖W 1,p(Ωx0,R) → 0 as h, k →∞.

Covering B(x0, R/2) by a finite number of balls with radius |λ|−1/2 we get that {uφ(k)}k
converges in W 2,p(Ωx0,R/2), so that, letting k → ∞ in (2.67) we get λu − Au = f in
Ωx0,R/2.
Moreover since the trace operator u→ u∂Γ is continuous from W 1,p(Γ) to Lp(∂Γ, dHn−1)
for every open subset Γ of Rn with bounded Lipschitz boundary, then B is a linear and
continuous operator from W 2,p(Ωx0,R/2) to Lp(∂Ωx0,R/2), hence we get

‖B(uk − u)‖Lp(∂Ω∩B(x0,R/2)) ≤ c1‖uk − u‖W 2,p(Ωx0,R/2),



49

where c1 is a constant depending on Ω, R and by ‖βi‖L∞(Ω), ‖γ‖L∞(Ω). Therefore we get
Bu = 0 in ∂Ω ∩B(x0, R/2). Since x0 and R are arbitrary, then{

λu−Au = f in Ω
Bu = 0 in ∂Ω

Now, fixed any q > n we can write (2.67) as follows

Λquk −Auk = (Λq − λ)uk + fk.

We observe that the right hand side is in L∞(Ω), and its sup norm is bounded by a
constant independent of k. Repeating the above arguments we conclude that u ∈W 2,q

loc (Ω)
for all q > n, so that u ∈ D(AB∞). Therefore ρ(AB∞) ⊃ {λ ∈ C : Reλ > Λ1

p} for every
p > n. Thus, from estimate (2.64) and Proposition 1.2.7 we conclude that AB∞ is sectorial.
Now, let u ∈ D(AB∞), then by the Sobolev embedding u is continuously differentiable
and its gradient is bounded: indeed, fixed p > n and f = Λpu−Au, by estimate (2.69)
we get

‖Du‖L∞(Ω) ≤ c(‖u‖L∞(Ω) + ‖Au‖L∞(Ω))

Moreover, choosing p = n/(1− α), using Theorem 1.5.2 (inequality (ii)) and (2.64) with
λ = Λ1

p we get, for i = 1, . . . , n,

|Diu(x)−Diu(y)| ≤ c|x− y|α(‖u‖L∞(Ω) + ‖Au‖L∞(Ω))

for all x, y ∈ Rn such that |x− y| ≤ (Λ1
p)
−1/2. On the other hand, if |x− y| ≥ (Λ1

p)
−1/2

then

|Diu(x)−Diu(y)|
|x− y|α

≤ 2‖Diu‖L∞(Ω)(Λ1
p)
α/2

≤ c(‖u‖L∞(Rn) + ‖Au‖L∞(Rn))

Therefore, D(AB∞) ⊂ C1,α(Ω) for α ∈ ]0, 1[.

From Theorems 2.3.2 and 2.3.3 we get the following result.

Corollary 2.3.4. Let Λ0 be as in Theorem 2.3.3. Set{
D(ABC) = {u ∈

⋂
p≥1W

2,p
loc (Ω); u, Au ∈ Cb(Ω), Bu|∂Ω = 0},

ABCu : D(ABC) → Cb(Ω), ABC = Au.

Then the resolvent set of ABC contains the half plane {λ ∈ C; Reλ > Λ0}, and ABC is
sectorial.

Proof. Since D(AB∞) ⊂ Cb(Ω), then ρ(AB∞) ⊂ ρ(ABC). Therefore ρ(ABC) contains
the half plane {Reλ > Λ0}. Estimate (2.64) and Proposition 1.2.7 prove that ABC is
sectorial.
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2.4 Elliptic boundary value problems in some Sobolev

spaces of negative order

In this section, as in the preceding one, we suppose that Ω is a domain with uniformly
C2 boundary ∂Ω. Here our aim is to prove existence, uniqueness and some useful esti-
mates for the solution of a boundary value problem for an elliptic operator A in suitable
Sobolev spaces of negative order. Actually, we are interested in deducing L1 norm esti-
mates of the gradient of the resolvent of the realization of A in L1 (see Theorem 2.5.3).
This can be done by duality starting from the solution of the dual problem.
In this section we follow, with significant modifications, ideas from [47], [48]. Before
stating the main result, let us introduce some notation.
Let 1 ≤ p < ∞; we shall consider the Banach spaces (W 1,p

0 (Ω))′ and (W 1,p(Ω))′

respectively denoted by W−1,p′(Ω) and W−1,p′

∗ (Ω) (we set 1′ = ∞). Each element
f ∈W−1,p′(Ω) (resp. f ∈W−1,p′

∗ (Ω)) admits a (not unique) Lp
′
representation; that is,

there exist f0, f1, . . . , fn ∈ Lp
′
(Ω) such that

〈f, v〉∗ =
∫

Ω

f0v dx+
n∑
i=1

∫
Ω

fiDivdx (2.70)

for every v ∈ W 1,p′

0 (Ω) (resp. v ∈ W 1,p′(Ω)), where 〈·, ·〉∗ denotes the duality between
W−1,p and W 1,p′

0 (resp. W−1,p
∗ and W 1,p′), see [1, Theorem 3.8]. In order to indicate an

Lp
′
representation of f we often write

f = f0 −
n∑
i=1

Difi (2.71)

where the equality has to be intended in the distributional sense specified in (2.70).
Obviously (W 1,p(Ω))′ is continuously embedded in (W 1,p

0 (Ω))′, and there is a natural
embedding of Lp

′
(Ω) in (W 1,p(Ω))′: we can identify any Lp

′
function f0 with the func-

tional
v 7→

∫
Ω

f0(x)v(x) dx.

We can consider these spaces as Banach spaces endowed with either the norm induced
by duality or the norm defined by

inf

{
n∑
i=0

‖fi‖Lp′ (Ω), fi satisfying (2.70)

}
.

In the following lemma we prove some useful estimates that hold in these spaces.

Lemma 2.4.1. For each p > n there exist two constants c1, c2 such that for each x0 ∈ Ω,
r > 0 and u ∈ Lp(Ω) with support in Ωx0,r (given in (2.56)),

‖u‖W−1,p
∗ (Ω) ≤ c1r‖u‖Lp(Ω) (2.72)

‖u‖W−1,∞
∗ (Ω) ≤ c2r

1−n/p‖u‖Lp(Ω) (2.73)
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Proof. Let ϕ ∈W 1,p′(Ω) be such that ‖ϕ‖W 1,p′ (Ω) ≤ 1. Then by Sobolev embedding
ϕ ∈ Lq(Ω) with q = (np′)/(n− p′) and ‖ϕ‖Lq(Ω) ≤ c where c depends only on Ω. Hence

‖u‖W−1,p
∗ (Ω) = sup

{∫
Ω

uϕdx ; ϕ ∈W 1,p′(Ω), ‖ϕ‖W 1,p′ (Ω) ≤ 1
}

but the following estimate holds∫
Ω

uϕdx ≤ ‖u‖Lq′ (Ωx0,r)‖ϕ‖Lq(Ω) ≤ cr‖u‖Lp(Ω)

and (2.72) is proved. In a similar way one can prove (2.73).

Here, in order to obtain a precise estimate for the L∞ norm of the solution of an
elliptic boundary value problem in W−1,∞

∗ (Ω), we follow a procedure similar to the one
used by Stewart in [42] and in [43] starting by W−1,p

∗ (Ω), 1 < p <∞.

2.4.1 Formally adjoint boundary value problems

Let A and B be the operators defined respectively in (2.1) and in (2.5) satisfying (2.4)
and (2.7). Let consider the elliptic problem (2.11); we are interested in the formulation of
its formally adjoint boundary value problem, hence, (at this moment) we do not take care
of the smoothness properties of the coefficients and we proceed by formal computations.
We define the formally adjoint differential operator A∗ of A by

A∗ =
n∑

i,j=1

Dj(a∗ijDi) +
n∑
j=1

b∗jDj + c∗ (2.74)

with
a∗ij = aij b∗i = −bi c∗ = c− divb.

Then by the divergence theorem∫
Ω

vAu dx =
∫

Ω

uA∗v dx+
∫
∂Ω

(
〈ADu, ν〉v − 〈ADv, ν〉u+ 〈B, ν〉uv

)
dHn−1

for all u, v ∈ C2(Ω) ∩ C1(Ω̄). We let νA := Aν and ρ(x) := 〈νA(x),ν(x)〉
〈β(x),ν(x)〉 , and define a

vector field by
τ := νA − ρβ.

We observe that 〈τ, ν〉 = 0 and that

〈D, νA〉 = ρ〈D,β〉+ 〈D, τ〉. (2.75)

Since ρ(x) 6= 0 for all x ∈ ∂Ω, we can define β∗ by

ρβ∗ := νA + τ
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so that
〈D, νA〉 = ρ〈D,β∗〉 − 〈D, τ〉. (2.76)

We see that β∗ so defined is a non-tangent vector field on ∂Ω, indeed ρ〈β∗, ν〉 = 〈νA, ν〉.
From (2.75) and (2.76) we get

〈ADu, ν〉v − 〈ADv, ν〉u = ρ(v〈Du, β〉 − u〈Dv, β∗〉) + 〈D(uv), τ〉

Finally we define γ∗ by
ργ∗ := ργ − 〈B, ν〉+ divτ

and the formally adjoint operator B∗ of B on ∂Ω by

B∗ =
n∑
i=1

β∗iDi + γ∗. (2.77)

Finally, applying the divergence theorem, we obtain∫
Ω

vAu dx =
∫

Ω

uA∗v dx+
∫
∂Ω

ρ(vBu− uB∗v) dHn−1

for all u, v ∈ C2(Ω) ∩ C1(Ω̄).

Henceforth we focus our attention to a particular choice of the boundary operator B.
We select the conormal boundary operator

B(x,D) =
n∑

i,j=1

aij(x)νi(x)Dj , (2.78)

in this way the formally adjoint operator B∗ is defined as follows

B∗ = 〈D, νA〉 − 〈B, ν〉

(since ρ = 1, τ = 0, β∗ = νA and γ∗ = −〈B, ν〉), and A∗ is defined in (2.74). We suppose
that aij , bi and c are real valued functions such that

aij = aji, aij , bi ∈W 2,∞(Ω), c ∈ L∞(Ω). (2.79)

Assumption (2.79) guarantees that hypotheses in Section 2.1 are satisfied both for the
couple of operators (A,B) and (A∗,B∗) and Theorem 2.2.10 can be applied to each of
them. We set

M1 = max
i,j

{‖aij‖W 2,∞(Ω), ‖bi‖W 2,∞(Ω), ‖c‖L∞(Ω)}. (2.80)

Now, we consider the realization of A with homogeneous boundary condition given
by B as in (2.78) in the Banach space W−1,p

∗ , so defined

Ep : D(Ep) = W 1,p(Ω) ⊂W−1,p
∗ (Ω) →W−1,p

∗ (Ω) (2.81)

by
〈Epu, v〉∗ = a(u, v) u ∈W 1,p(Ω), v ∈W 1,p′(Ω) (2.82)
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where
a(u, v) = −

∫
Ω

〈ADu,Dv〉 dx+
∫

Ω

〈B,Du〉v dx+
∫

Ω

cuv dx (2.83)

in W 1,p(Ω)×W 1,p′(Ω). Analogously we could define the realization of (A∗,B∗) in W−1,p′

∗
in this way:

Ep′ : D(Ep′) = W 1,p′(Ω) ⊂W−1,p′

∗ (Ω) →W−1,p′

∗ (Ω) (2.84)

by
〈Ep′u, v〉∗ = a∗(u, v) u ∈W 1,p′(Ω), v ∈W 1,p(Ω) (2.85)

where
a∗(u, v) = −

∫
Ω

〈ADu,Dv〉 dx+
∫

Ω

〈B,Dv〉u dx+
∫

Ω

cuv dx (2.86)

in W 1,p′(Ω)×W 1,p(Ω).

We start with two technical results involving Lp estimates that are true for both Ep
and Ep′ and that for simplicity are stated only in one case.

Theorem 2.4.2. The operator Ep is sectorial in W−1,p
∗ (Ω). In particular there is a

constant ωp ∈ R depending on n, p, µ,M1,Ω such that for each λ ∈ C with Reλ > ωp
and for each f ∈ W−1,p

∗ (Ω) the solution u ∈ W 1,p(Ω) of the equation (λ − A)u = f

satisfies
|λ|‖u‖W−1,p

∗ (Ω) + |λ|1/2‖u‖Lp(Ω) + ‖u‖W 1,p(Ω) ≤ K1‖f‖W−1,p
∗ (Ω) (2.87)

where K1 > 0 is a constant independent of λ and f .

Proof. Denote by ABp the realization of A in Lp with homogeneous boundary con-
ditions Bu = 0 and analogously A∗B

∗

p′ the realization of A∗ in Lp
′

with homogeneous
boundary conditions B∗u = 0. We know that D(ABp ) = {u ∈ W 2,p(Ω) : Bu = 0 in ∂Ω}.
Then for each u ∈ D(A∗B

∗

p′ ) and v ∈ Lp(Ω), we have 〈A∗B
∗

p′ u, v〉 = 〈u, (A∗B
∗

p′ )∗v〉 where
(A∗B

∗

p′ )∗ is the adjoint of A∗B
∗

p′ and belongs to L(Lp(Ω), (D(A∗B
∗

p′ )′) where (D(A∗B
∗

p′ )′ is
the dual space of D(A∗B

∗

p′ ). Note that the restriction of (A∗B
∗

p′ )∗ to D(ABp ) coincides with
ABp . Therefore, from the complex interpolation theory (see Theorem A.3.5), we have that
(A∗B

∗

p′ )∗ is a bounded linear operator from [Lp(Ω), D(ABp )]1/2 to [(D(A∗B
∗

p′ ))′, Lp(Ω)]1/2
where [·, ·]1/2 is the complex interpolation space of order 1/2, (see Section A.3 for the
relevant definitions and results). Using [39, Theorem 4.1], which holds for domains with
uniformly smooth boundary, we can characterize the complex interpolation spaces in the
following way:

[Lp(Ω), D(ABp )]1/2 = W 1,p(Ω)

[(D(A∗B
∗

p′ ))′, Lp(Ω)]1/2 = [Lp
′
(Ω), D(A∗B

∗

p′ )]′1/2 = (W 1,p′(Ω))′ = W−1,p
∗ (Ω) (2.88)

where in the first equality in (2.88) we have used (A.16). Therefore the restriction of
(A∗B

∗

p′ )∗ to the space W 1,p(Ω) is a bounded linear operator from W 1,p(Ω) to W−1,p
∗ (Ω)

and coincides with Ep.
Now, we show that there exists a constant k1 such that for each λ with Reλ large enough,

‖(λ−ABp )−1‖L(Lp,D(AB
p )) ≤ k1. (2.89)
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Since ABp is a sectorial operator, there exists ω1 ∈ R such that for each λ ∈ C with
Reλ ≥ ω1 and for each f ∈ Lp(Ω) the equation

(λ−A)u = f

admits a solution u ∈W 2,p(Ω) with Bu = 0 in ∂Ω satisfying (2.48). Hence

‖u‖D(AB
p ) = ‖u‖Lp(Ω) + ‖Au‖Lp(Ω) ≤ (1 + |λ|)‖u‖Lp(Ω) + ‖f‖Lp(Ω)

≤ (
1 + |λ|
|λ|

+ 1)‖f‖Lp(Ω) ≤ k1‖f‖Lp(Ω)

for Reλ large. Analogously, there exists a constant ω2 ∈ R and k2 > 0, such that

‖(λ−A∗B
∗

p′ )−1‖L(Lp′ ,D(A∗B∗
p′ )) ≤ k2 (2.90)

for Reλ > ω2. Using (2.90) we get that

[(λ−A∗B
∗

p′ )−1]∗ = [(λ−A∗B
∗

p′ )∗]−1 ∈ L((D(A∗B
∗

p′ ))′, Lp)

hence an argument similar to the previous one yields that the operator [(λ−A∗B
∗

p′ )−1]∗

belongs to L(W−1,p
∗ (Ω),W 1,p(Ω)) and coincides with (λ− Ep)−1.

Set K = k1 + k2 and ωp > ω1 ∨ ω2; then, for every λ with Reλ > ωp and for every
f ∈W−1,p

∗ (Ω) we have that ‖u‖W 1,p(Ω) ≤ K‖f‖W−1,p
∗ (Ω) where u = (λ−Ep)−1f . Then,

for every v ∈W 1,p′(Ω),
〈f, v〉∗ = λ〈u, v〉∗ − 〈Epu, v〉∗

Thus

|〈u, v〉∗| ≤ |λ|−1 (|〈Epu, v〉∗|+ |〈f, v〉∗|)

≤ c|λ|−1
(
‖u‖W 1,p(Ω)‖v‖W 1,p′ (Ω) + ‖f‖W−1,p

∗ (Ω)‖v‖W 1,p′ (Ω)

)
≤ c|λ|−1

(
K‖f‖W−1,p

∗ (Ω)‖v‖W 1,p′ (Ω) + ‖f‖W−1,p
∗ (Ω)‖v‖W 1,p′ (Ω)

)
Hence we have proved that

|λ|‖u‖W−1,p
∗ (Ω) + ‖u‖W 1,p(Ω) ≤ c‖f‖W−1,p

∗ (Ω). (2.91)

Therefore, (2.87) is consequence of (2.91) and of the fact that

(W−1,p
∗ (Ω),W 1,p(Ω))1/2,p = Lp(Ω)

for 1 < p <∞ (see [46, Section 2.4.2, Theorem 1; Section 4.2.1, Definition 1]).

Remark 2.4.3. We observe that if f ∈ Lp(Ω), then u = (λ − Ep)−1f ∈ D(ABp ) and
therefore Bu = 0 in ∂Ω.

Lemma 2.4.4. Let p ≥ 2 and f ∈ W−1,p
∗ (Ω) with f = f0 −

∑n
i=1Difi; then for each

λ ∈ C with Reλ > ωp, for each r < 1 and for each x0 ∈ Ω, the solution u ∈ D(Ep) of
the equation λu−Au = f satisfies the following estimate

‖u‖W 1,p(Ωx0,r) ≤ K2

{
n∑
i=1

‖fi‖Lp(Ωx0,2r) + r‖f0‖Lp(Ωx0,2r) + r−1‖u‖Lp(Ωx0,2r)

}
(2.92)

where Ωx0,r is defined in (2.56) and K2 is a constant independent of λ and f .
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Proof. We point out that the space of functions

C−1
ν = {g = g0 −

n∑
i=1

Digi; gi ∈ C1(Ω) ∩ Lp
′
(Ω),

n∑
i=1

giνi = 0 on ∂Ω}

is dense in W−1,p
∗ , because every fi in the representation of distributions in W−1,p

∗ as
in (2.71) can be approximated in Lp norm. Hence, it is sufficient to prove the claim for
functions in C−1

ν . Then, passing to the limit in the estimate we get the claim for every
f ∈W−1,p

∗ (Ω).
Suppose then that f ∈ C−1

ν ; for each x0 ∈ Ω and r < 1, let θ ∈ C2(Rn) with θ(x) = 1
for |x − x0| ≤ r, θ(x) = 0 for |x − x0| ≥

√
2r, |Dθ| ≤ cr−1 and 〈ADθ, ν〉 = 0 in ∂Ω.

Such a function can be obtained in the following way: first we consider a cut-off function
ψ ∈ C2(Rn), ψ(x) = 1 in B(x0, r)∩Ω and ψ = 0 in Ω∩ (B(x0,

√
2r))c, then we modify ψ

in a neighborhood of the boundary making it constant in the direction Aν in order that
〈Dψ,Aν〉 = 0 in ∂Ω. Finally we recover the regularity and preserve the homogeneous
boundary condition by convolution with a family of mollifiers whose support is B(0, ε)
with ε sufficiently small. In this way the function w := θu satisfies the equation

λw −Aw = E + F +G = g (2.93)

where

E = −
n∑

i,j=1

Di(aijuDjθ)−
n∑
i=1

biuDiθ

F = −
n∑

i,j=1

aijDjuDiθ

G = −
n∑
i=1

Di(θfi) +
n∑
i=1

fiDiθ + θf0 (2.94)

Thus, multiplying (2.93) by w and integrating by parts we get

∫
Ω

〈AD(θu), D(θu)〉 dx =
∫

Ω

〈B,D(θu)〉θu dx−
∫

Ω

(λ− c)(θu)2 dx

+
∫

Ω

〈ADθ,D(θu)〉u dx−
∫

Ω

〈B,Dθ〉θu2 dx

−
∫

Ω

〈ADθ,Du〉θu dx+
n∑
i=1

∫
Ω

θfiDi(θu) dx

+
n∑
i=1

∫
Ω

fi(Diθ)θu dx+
∫

Ω

f0θ
2u dx (2.95)

We point out that in (2.95) all the integrals are on Ω∩B(x0,
√

2r). Now, using (2.4) and
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the properties of the function θ we get

µ−1‖Du‖2L2(Ω∩B(x0,r))
≤ c
(
r−2‖u‖2

L2(Ω∩B(x0,
√

2r))
+

n∑
i=1

‖fi‖2L2(Ω∩B(x0,
√

2r))

)
+
∫

Ω∩B(x0,
√

2r)

〈B,Du〉θ2u dx+
∫

Ω∩B(x0,
√

2r)

〈ADθ,Du〉θu dx

+
n∑
i=1

∫
Ω∩B(x0,

√
2r)

θ2fiDiu dx

Finally, using the inequality ab ≤ εa2 + ε−1b2, we prove that there exists a constant c
depending on the norm of the coefficients of A and on the ellipticity constant µ such that

‖Du‖L2(Ω∩B(x0,r)) ≤ c
( n∑
i=0

‖fi‖L2(Ω∩B(x0,
√

2r)) + r−1‖u‖L2(Ω∩B(x0,
√

2r))

)
(2.96)

which implies the statement for p = 2. By Theorem 2.4.2 applied to equation (2.93), we
get

‖θu‖W 1,p(Ω) ≤ K1‖g‖W−1,p
∗ (Ω) ≤ K1

( n∑
i=0

‖fi‖Lp(Ω∩B(x0,
√

2r))

+ r−1(
n∑

i,j=1

‖aij‖L∞ +
n∑
i=1

‖bi‖L∞)‖u‖Lp(Ω∩B(x0,
√

2r))

+
n∑

i,j=1

‖aijDjuDiθ‖W−1,p
∗ (Ω)

)
(2.97)

By the Sobolev embedding theorem, every test function φ ∈ W 1,p′(Ω) belongs also to
Lq

′
(Ω), with q′ = np/(np − n − p), and ‖φ‖Lq′ (Ω) ≤ k‖φ‖W 1,p′ (Ω) with k = k(p,Ω).

Therefore, by (2.96) for 2 < p ≤ 2n/(n− 2) if n > 2 (for every p if n ≤ 2), we get

‖aijDjuDiθ‖W−1,p
∗ (Ω) ≤ cr−1‖Du‖Lnp/(n+p)(Ω∩B(x0,

√
2r))

≤ crn( 1
p−

1
2 )‖Du‖L2(Ω∩B(x0,

√
2r))

≤ crn( 1
p−

1
2 )
( n∑
i=0

‖fi‖L2(Ω∩B(x0,2r)) + r−1‖u‖L2(Ω∩B(x0,2r))

)
≤ c
( n∑
i=0

‖fi‖Lp(Ω∩B(x0,2r)) + r−1‖u‖Lp(Ω∩B(x0,2r))

)
where c depends on n, ‖aij‖∞, p,Ω and it may change from a line to the other.
Summing up we find

‖θu‖W 1,p(Ω) ≤ K2

( n∑
i=0

‖fi‖Lp(Ω∩B(x0,
√

2r)) + r−1‖u‖Lp(Ω∩B(x0,2r))

)
.

Since θu = u on Ω ∩ B(x0, r) we get the statement for every p ∈ [2, 2n/(n − 2)] when
n > 2 and for all p ≥ 2 if n ≤ 2. Repeating the same procedure, starting from p = 2n

n−2
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we can prove the statement for every p ∈ [2, 2n/(n − 4)] if n > 4, for every p if n ≤ 4.
Thus, after [n/2] steps, the proof is complete.

The following estimate is proved by using a modification of Stewart’s technique. It
will be useful in order to obtain the estimate of the gradient of the solution of (2.111) in
L1(Ω).

Theorem 2.4.5. Let p > n, f ∈ W−1,∞
∗ (Ω) ∩W−1,p

∗ (Ω); then, there exists ω∞ > ωp
such that for each λ ∈ C with Reλ > ω∞ the solution u ∈ D(Ep) of λu−Au = f belongs
to W 1,p and satisfies

|λ|1/2‖u‖L∞(Ω) ≤ K3‖f‖W−1,∞
∗ (Ω), (2.98)

where K3 is a constant independent of λ, u and f .

Proof. Let x0 ∈ Ω and r < 1. Let θ be a cut-off function as the one considered
in proof of Lemma 2.4.4: θ ∈ C2(Rn), θ(x) = 1 on B(x0, r) θ(x) = 0 outside B(x0, 2r)
and with ‖Dαθ‖L∞(Ω) ≤ cr−|α| for each |α| ≤ 2. As f belongs to W−1,∞

∗ (Ω), it admits
a distributional representation f = f0 −

∑n
i=1Difi, where fi ∈ L∞(Ω) for each i =

0, 1, . . . , n and
∑n
i=0 ‖fi‖L∞(Ω) ≥ ‖f‖W−1,∞(Ω). Note that u ∈ W 1,p(Ω) for p > n by

Theorem 2.4.2, therefore θu ∈W 1,p(Ω) and solves

(λ−A)(θu) = g (2.99)

where g is defined in (2.94). By (2.97), (2.72) and (2.92), we get

‖g‖W−1,p
∗ (Ω) ≤ K4

{
‖u‖W 1,p(Ωx0,2r) + r−1‖u‖Lp(Ωx0,2r) +

n∑
i=0

‖fi‖Lp(Ωx0,2r)

}

≤ K5

{
n∑
i=0

‖fi‖Lp(Ωx0,4r) + r−1‖u‖Lp(Ωx0,4r)

}

≤ K6r
n/p

{
n∑
i=0

‖fi‖L∞(Ω) + r−1‖u‖L∞(Ω)

}
, (2.100)

where K4,K5 and K6 are constants independent of r, λ, f and u. Since

W 1,p(Ωx0,2r) ↪→ C0(Ωx0,2r) ↪→ Lp(Ωx0,2r)

for p > n and the first injection is compact, then for each ε > 0 we get

‖θu‖L∞(Ωx0,2r) ≤ εr1−n/p‖θu‖W 1,p(Ωx0,2r) + c(ε)r−n/p‖θu‖Lp(Ωx0,2r), (2.101)

where c(ε) is independent of r, λ, u and f (see Lemma 5.1 of [30]).

Moreover, (2.73) and the Hölder inequality imply

‖θu‖W−1,∞
∗ (Ωx0,r) ≤ c2r

1−n/p‖θu‖Lp(Ωx0,r) ≤ c2r‖θu‖L∞(Ω). (2.102)

Therefore, from (2.101) and (2.102) we get

r−2‖θu‖W−1,∞
∗ (Ω) + r−1‖θu‖L∞(Ω) ≤ εr−n/p‖θu‖W 1,p(Ω) + c(ε)r−1−n/p‖θu‖Lp(Ω).

(2.103)
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On the other hand, from (2.87)

|λ|‖θu‖W−1,p
∗ (Ω) + |λ|1/2‖θu‖Lp(Ω) + ‖θu‖W 1,p(Ω) ≤ K1‖g‖W−1,p

∗ (Ω). (2.104)

Therefore, by (2.103), (2.104) and (2.100) we deduce

r−2‖θu‖W−1,∞
∗ (Ω) + r−1‖θu‖L∞(Ω)

≤ K1K6

(
ε+ c(ε)r−1|λ|−1/2

)(
r−1‖u‖L∞(Ω) +

n∑
i=0

‖fi‖L∞(Ω)

)
.

Set K7 = 4K1K6 and choose ω∞ ≥ ωp and ε = K−1
7 , r = K7c(K−1

7 )|λ|−1/2 = K8|λ|−1/2.
Then, if x0 is a maximum point for the function |u| we obtain

K−2
8 |λ|‖θu‖W−1,∞

∗ (Ω) +
1
2
K−1

8 |λ|1/2‖u‖L∞(Ω) ≤
1
2

n∑
i=0

‖fi‖L∞(Ω) ≤ ‖f‖W−1,∞
∗ (Ω).

(2.105)
Thus (2.98) is proved.

2.5 Generation of analytic semigroups in L1(Ω)

In this section we prove that the realization of uniformly elliptic operators with suit-
able oblique boundary conditions is sectorial in L1(Ω) where Ω is assumed to satisfy
(2.2). We consider the operator A in divergence form with real-valued coefficients

A(x,D) =
n∑

i,j=1

Di(aij(x)Dj) +
n∑
i=1

bi(x)Di + c(x)

= div(A(x)D) +B(x) ·D + c(x). (2.106)

We suppose that A is uniformly µ-elliptic, i.e.,

µ−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2, x ∈ Ω, ξ ∈ Rn (2.107)

and that
aij = aji, aij , bi ∈W 2,∞(Ω), c ∈ L∞(Ω). (2.108)

Actually the regularity assumption on the coefficients bi will be weakened later. Define

M1 = max
i,j

{‖aij‖W 2,∞(Ω), ‖bi‖W 2,∞(Ω), ‖c‖L∞(Ω)}. (2.109)

We consider the following first order differential operator acting on the boundary

B(x,D) = 〈AD, ν〉 =
n∑
i=1

aij(x)νi(x)Dj . (2.110)
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Since we would like to solve the problem in L1 by duality from L∞, we point out that
the choice of the coefficients and the assumptions of regularity (2.108) guarantee that
hypotheses in Section 2.1 hold also for (A∗,B∗); this fact allows us to apply the results
of Section 2.3 to the realization of A∗ with homogeneous boundary conditions given by
B∗ in L∞(Ω).

In order to deduce a result of generation in L1(Ω) we argue as follows. Set

DA = {u ∈ L1(Ω) ∩ C2(Ω̄); Au ∈ L1(Ω),Bu = 0 in ∂Ω}.

Lemma 2.5.1. A : DA ⊂ L1(Ω) → L1(Ω) is closable in L1(Ω).

Proof. Let (uj) be a sequence in DA such that uj → 0 and Auj → v in L1(Ω).
Then, integrating by parts,∫

Ω

ϕv dx = lim
j→∞

∫
Ω

ϕAuj dx = lim
j→∞

∫
Ω

ujA∗ϕdx = 0

for every ϕ ∈ C∞c (Ω). Hence v = 0, which implies the assertion.

By Lemma 2.5.1 we can define the realization of A in L1 with boundary condition B,
(that will be denoted for simplicity by (A1, D(A1)) to be the closure of A|DA in L1(Ω),
that is, the smallest closed extension of A|DA in L1(Ω). Then D(A1) is the closure of DA
with respect to the graph norm in L1. Now we are in a position to prove the following
result.

Theorem 2.5.2. There exist C > 0 and ω1 ∈ R, depending on n, µ,M1 and Ω, such
that for Reλ ≥ ω1 the problem{

λu−Au = f in Ω
Bu = 0 in ∂Ω

(2.111)

with f ∈ L1(Ω) has a unique solution u ∈ L1(Ω) and

|λ|‖u‖L1(Ω) ≤ C‖f‖L1(Ω). (2.112)

Proof. First of all we prove that the range of (λ−A1) contains the space of functions
L∞c (Ω) = {ψ ∈ L∞(Ω); suppψ ⊂⊂ Ω} which is dense in L1(Ω).
Indeed, let π ∈ C2(Ω) be such that

∑n
i,j=1 |Dijπ|+

∑n
i=1 |Diπ|2 ≤ c

e−π ∈ L1(Ω)
〈ADπ, ν〉 = 0 in ∂Ω

Moreover, if Ω is unbounded, we also require that lim|x|→∞,x∈Ω π(x) = +∞. Such a π
exists. For instance, when Ω = Rn one can choose π(x) =

√
1 + |x|2. In the general case

one can adapt the previous example modifying π near the boundary in a suitable way.



60

We define Π(x) = exp[π(x)]. Then, for every function ψ ∈ L∞c (Ω), we get Πψ ∈ L∞c (Ω)
and {

λu−Au = ψ ∈ L∞c (Ω)
Bu = 0 in ∂Ω

if and only if {
λΠu−Aπ(Πu) = Πψ ∈ L∞c (Ω)
B(Πu) = 0 in ∂Ω

(2.113)

where

Aπ = A− 2
n∑

i,j=1

aijDiπDj +
( n∑
i,j=1

(Di(aijDjπ)− aijDiπDjπ) +
n∑
i=1

biDiπ
)
.

As it is easily seen, the operator Aπ satisfies the assumptions (2.3)-(2.4); moreover, since
A0
π(x, ξ) = A0(x, ξ) then Aπ satisfies also the root and the complementing conditions.

Therefore, by applying Theorem 2.3.3 we get that there exists Πu ∈ D((Aπ)B∞) ⊆ L∞(Ω)
solution of (2.113).
Hence u ∈ {v ∈ C1(Ω̄)∩L1(Ω);Av ∈ L1(Ω)} and ψ is therefore in the range of (λ−A1).
Now we prove (2.112). Let consider u solution of λu−Au = f ∈ L1(Ω) and let

A∗ =
n∑

i,j=1

Dj(aijDi)−
n∑
j=1

bjDj + (c− div b)

Then, from Theorem 2.3.3, it follows that (A∗)B
∗

∞ with oblique boundary conditions
B∗(x,D) = 〈A(x)D, ν(x)〉 − 〈B(x), ν(x)〉 = 0 generates an analytic semigroup in L∞(Ω)
and so the elliptic problem {

λw −A∗w = ϕ ∈ L∞(Ω)
B∗w = 0 in ∂Ω

(2.114)

has a unique solution w ∈ D((A∗)B
∗

∞ ) for Re λ sufficiently large. Moreover, taking Reλ
sufficiently large we get

|λ|‖w‖L∞(Ω) + |λ|1/2‖Dw‖L∞(Ω) ≤ K̃‖ϕ‖L∞(Ω).

Now, we can apply the method used in Pazy (see [35]) to obtain

‖u‖L1(Ω) = sup
{∫

u(x)ϕ(x)dx; ϕ ∈ L∞c (Ω), ‖ϕ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

u(x)(λ−A∗)wϕdx; wϕ ∈ L∞(Ω) solution of (2.114), ‖ϕ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

wϕ(λ−A)udx; wϕ ∈ L∞(Ω) solution of (2.114), ‖ϕ‖L∞(Ω) ≤ 1
}

in particular,
‖u‖L1(Ω) ≤ K̃|λ|−1‖f‖L1(Ω).

So, (λ−A1) is an injective operator with closed range in L1(Ω) and the proof is complete.

The following theorem establishes further properties of the resolvent operator.
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Theorem 2.5.3. Under the assumptions of Theorem 2.5.2, there exist ω′1 ≥ ω1, K ′ ≥
K and θ′1 ∈ (π/2, θ1) depending on n, µ,M1 and Ω such that for every λ such that
|arg (λ− ω′1)| < θ′1, the solution of (2.111) satisfies

|λ|1/2‖Du‖L1(Ω) ≤ K ′‖f‖L1(Ω). (2.115)

Proof. Let φ = divψ with ψ any function in L∞(Ω,Rn). By the estimate (2.98) we
know that for λ with Reλ > ω∞, the solution of the following problem{

λv −A∗v = divψ
B∗v = 0 on ∂Ω

(2.116)

satisfies
|λ|1/2‖v‖L∞(Ω) ≤ K3‖divψ‖W−1,∞

∗ (Ω). (2.117)

We notice that

‖divψ‖W−1,∞
∗

= sup{〈divψ,ϕ〉 : ϕ ∈W 1,1(Ω), ‖ϕ‖W 1,1(Ω) ≤ 1} ≤ ‖ψ‖L∞ . (2.118)

Now, if u is the solution of (2.111), we get

‖Du‖L1(Ω) = sup
{∫

Ω

〈Du(x), ψ(x)〉dx : ψ ∈ C∞c (Ω;Rn), ‖ψ‖L∞(Ω) ≤ 1
}

= sup
{∫

Ω

u(x) divψ(x)dx : ψ ∈ C∞c (Ω;Rn), ‖ψ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

Ω

u(x) divψ(x)dx : ψ ∈ C∞c (Ω;Rn), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
= sup

{∫
Ω

u (λ−A∗) vψ dx : vψ solution of (2.116), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
= sup

{∫
Ω

[(λ−A)u] vψ dx : vψ solution of (2.116), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
≤ C sup

{
‖f‖L1(Ω)‖vψ‖L∞(Ω) : vψ solution of (2.116), ‖divψ‖W−1,∞

∗ (Ω) ≤ 1
}
.

(2.119)

Now, taking into account (2.117), we get

‖Du‖L1(Ω) ≤ K ′|λ|−1/2‖f‖L1(Ω).

As a consequence of Theorem 2.5.2 we have that A1 is sectorial, that is there exist
K ∈ R and θ1 ∈ (π/2, π) such that

Σθ1,ω1 = {λ ∈ C; λ 6= ω1, |arg (λ− ω1)| < θ1} ⊂ ρ(A1)

and
‖R(λ,A1)‖L(L1(Ω)) ≤

K

|λ− ω1|
holds for each λ ∈ Σθ1,ω1 .




