Chapter 2

Generation of analytic
semigroups by elliptic
operators

2.1 Assumptions and formulation of the boundary
value problem
In this chapter Q will denote either R™ or an open subset of R" (n > 2) with suffi-
ciently smooth boundary 9. For any x € 99 we denote by v(z) the exterior unit normal
vector to 02 at x € 0.

We shall consider the linear second order differential operator A(z, D) with real coefli-
cients operating on complex valued functions u(x) defined in the domain 2

A(z,D) = > Di(a;(z)D;) + > _bi(z)D; + c(x)
ij=1 i=1
=div(A-D)+B-D+c. (2.1)

The leading part of A(x, D) is denoted by A%(z, D):

.AO(Jj, D) = Z (23] (J,‘)DZD7
i
In what follows we assume the following conditions.

SMOOTHNESS CONDITION ON §: §) is uniformly regular of class C?. (2.2)

SMOOTHNESS CONDITION ON A:

aij = aj; € Cy(Q) and  b;,c € Lo(Q). (2.3)

29
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ELLIPTICITY CONDITION ON 2: A is uniformly p-elliptic in €2, i.e., there exists a constant
i > 1 such that for any z € Q and ¢ € R™

p e < A%(x, ) < plel?, (2.4)

Moreover if @ # R", we consider some boundary conditions. These conditions are
expressed by a linear first order differential operator with real coefficients defined for
x € 0

We assume the following.
SMOOTHNESS CONDITION ON B:

Bi,y € UC (), (2.6)

i.e., 8,7 are differentiable on 02 and the derivatives are all bounded and uniformly
continuous on 92 and the uniform nontangentiality condition

Zﬁi(x)u T

inf

€052 (27)

holds.

In the sequel the Agmon-Douglis-Nirenberg a priori estimates will be very useful.
They hold for operators with complex valued coefficients for which (2.3) holds and uni-
form ellipticity consists in requiring that there exists a constant g > 1 such that for any
z€Nand £ €R"

PP < A% (2, 6)] < plel?, (2.8)

Due to the ellipticity of A, (2.8), we get that for every real vector £ = (£1,...,&,) #0
and for every point x € € there holds A°(z,£) # 0. Hence in particular for every linearly
independent real vectors ¢ and 7, the polynomial A°(xz, & + 7)) of the variable 7 has no
real roots. We assume the following.

ROOT CONDITION: For every pair of linearly independent real vectors £, n the polynomial
A®(x, & + 1) of the variable 7 has a unique root 7;~ with positive imaginary part.

It is easy to verify that if n > 3 all elliptic operators satisfy the Root Condition. Indeed
in the case £ 10, if we take for simplicity 7 = e,, then A°(x, &+ 1) = A°%(x, &', ) with
&= (&, &n—1), & # 0. We define the constant functions f,, g, : R"71\ {0} — N as
follows

) =#{reC: A%z, +7) =0, Im7 > 0}

g,(&)=#{reC: A%z, &+ ) =0), ImT < 0},

and we observe that since if 7 is a root for &, 7 then —7 is a root for —§, —n we deduce
(&) = gny(=¢). Moreover, if n > 3 then g,(—¢') = g,(¢'). In fact, the points ¢ and
—¢&' can be joined by a smooth simple curve v in R"~1\ {0} (which is a connected set)
and the roots of the polynomial 7 +— A%(z,~() +7n) are continuous functions along ~. If
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gn were not constant along v, the imaginary part of some roots would change sign, hence
it would vanish and give a real root, which is impossible. Therefore, f,(¢’), ¢,(¢') and
gn(—&') coincide everywhere on R"~1\ {0} if n > 3. The general case can be recovered
by the previous one. Indeed let £, € R™\ {0} with £ and 7 linearly independent; we can
write £ = & + &7 with 7 = #, ¢ #0and ¢ L1, then A°(€ + 1) = A°(& + 7'1)) with
7' =¢&" 4+ 7|n| and ¢ L 7. Finally we observe that f,(¢') = f3(¢') and g,(¢') = g4(¢');
thus repeating the argument above we conclude for two arbitrary linearly independent
vectors &, 7.

Moreover, we require that the boundary conditions are expressed as before by (2.5) with
complex coefficients

8,7 € UG, ((;C) (2.9)

that must “complement” the differential equation. This condition called complementing
boundary condition consists of an algebraic criterion involving the leading parts of A and

B.

COMPLEMENTING CONDITION (2.10)

Let z be an arbitrary point on 02 and v be the outward normal unit vector to 0S2 at x. For
each vector ¢ # 0 tangential to 90 at z, let 7, be the root of the polynomial A°(z, £ +7v)
with positive imaginary part. Then the polynomial B%(z, & + 7v) = (8(z),€ + Tv) has
to be linearly independent modulo the polynomial (7 — 7'1+ ). This means that 7'1+ cannot
be solution of B°(¢ + 7v) = 0 and it is obviously satisfied if (2.7) holds.

We notice that if the coefficients of A are real and satisfy
Y ai(@)& > pls? zeQ, EeRT
4,J

for some p > 0, then the Root Condition is immediately satisfied. Indeed in that case the
polynomial in 7, A%(€ 4+ 7v) has not real roots, therefore it has two conjugate complex
solutions.

Remark 2.1.1. The reason why we have considered complex valued coefficients and
introduced assumption (2.8) is the fact that we shall use the Agmon-Douglis-Nirenberg
estimates (2.13) and (2.14) with A replaced by the operator A+ ¢ D;; in n+ 1 variables
(x,t), with § € [—m/2,7/2], which satisfies (2.8) and the Root Condition too.

2.2 Basic estimates for elliptic equations

The aim of this chapter is to prove that under the assumptions listed in Section 2.1,
the realizations of A with homogeneous boundary conditions Bu = 0 in 052, are sectorial
operators in suitable Banach spaces. As a result they generate analytic semigroups in
those spaces (see Proposition 1.2.3).
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A sufficient condition for the sectoriality of an operator is given in Proposition 1.2.7.
Here we first need some existence and uniqueness results for elliptic boundary value
problems of the type

Au— A(-, D)u = in Q
u—AC,Dju=f in (2.11)
B(-,D)u=0 in 0Q

and then some resolvent estimate like (1.8).

Now we recall the a priori estimates due to Agmon, Douglis and Nirenberg that hold for
operators with complex coefficients satisfying hypothesis of Section 2.1 in R™ as well as
in regular domains. For a complete analysis of these estimates we refer to [2] and [3].
We recall them in the following theorem in a way that will be used later. We set

M = max{{|ai; 1,00, [[billoos [lfl oo }- (2.12)

Theorem 2.2.1. (Agmon-Douglis-Nirenberg)

(i) Let A(z, D) be defined as in (2.1). Suppose that a;;,b;,c: R" — C satisfy hypothe-
ses (2.3), (2.8) and the Root Condition. Then for every p € (1,+00) there exists

a strictly positive constant C depending only on p,n,u and M such that for every
u € W2P(RM)

lullw2r@e) < C ([JullLe@ny + [AC D)ullLe@ny) - (2.13)

(ii) Let Q be an open set in R™ with uniformly C? boundary, and A(z,D) defined by
(2.1). Suppose that a;;,b;,c : Q — C satisfy hypotheses (2.3), (2.8) and the Root
Condition. Let in addition B;,~ satisfy (2.9) and the complementing condition. For
every u € W2P(Q), with 1 < p < oo, set f = A(-,D)u, g = B(-, D)ujpq. Then
there is C1 = C1(p,n, u, M, Q) > 0 such that

lullwzr@) < C1 (lulle@) + 1 f e + lgrllwre@)) - (2.14)

where g1 is any WP extension of g to ).

Observe that the estimates in Theorem 2.2.1 are not true for p = 1 and p = oo. For
this reason the theory of LP(2), 1 < p < oo cannot be rearranged to the cases L' or L°°.
For p = oo this difficulty has been overcome by K. Masuda and H.B. Stewart (see [42],
[43]) using the classical L? theory and by passing to the limit in the L? estimates in a
suitable way.

One of the ways to solve the case p = 1 consists in using duality from L.

This chapter is organized as follows: in Section 2.2.1 we discuss the generation in LP,
1 < p < oo for an elliptic operator of second order with homogeneous non tangential
boundary conditions. Using these results we study the same problem in L*°(£2). Finally
in Section 2.5 we confine our attention to a particular boundary operator and we prove
sectoriality for the realization in L! of the operator A with the homogeneous boundary
condition there specified.
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2.2.1 Analytic semigroups in L?(R"), 1 <p < o0

First suppose 2 = R"™ and consider the realization of A in LP(R™). Define
D(A,) = W*P(R™), Apu=A(-,D)u, u€ D(A,), (2.15)

We start by the simplest case when a;; = d;; b;,c¢ = 0. In this way the operator in (2.1)
reduces to the Laplace operator:
n
A=) "Dj.
i=1

By (i) of the Theorem 2.2.1, it follows that the operator A with domain W?2?(R") is
closed.

Theorem 2.2.2. Let 1 < p < oo and consider the operator A with domain given by
W2P(R™). Then, there exist 53 < 99 < m and My > 0 depending on p such that
p(A) DXy ={N e C; A#£0, |arg \| < ¥} and the estimate
My

”(/\ - A)71||£1(LP(R”)) < W

(2.16)
holds for A € ¥y for any 9 < ¥q.

PROOF. First we consider the case p > 2. For u € C°(R"), we put u* := itu[P~2
where @ denotes the complex conjugate of u. Since the function f(z) = Z|z|P~* is
continuously differentiable, u* € C}(R™). By the chain rule we obtain

Dypu* = |uP72Dpa + (p — 2)|ulP~*aRe (aDyu).

Integration by parts yields

- Au-u* = —/ Z(thU)ﬂ\u|p_2
" h=1

Rn
_ / S Dyuby(ajufr~?)
R™ 1

:/ S (jufP~2 DyuDy
" h

=1
+ (p — 2)|[u|P~*aDyuRe (wDpu)).

Since
Re (Jul*DpuDpi) = (Re (@Dpu))? + (Im (@Dpu))?,
then

—Re Au-u* = (p— 1)/ |ulP~* Z(Re (@Dpu))?
R" R" P

+/ P~ Im (@Dpu))? =: (p— DA+ B> >0 (2.17)
Rn h=1
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and

—Im Au-u*=(p—2) / |ufP~4 Z Im (aDpu)Re (aDpu).
R" R» h=1

Now, using the Cauchy- Schwartz inequality we obtain

n

/ ) |u|p—4’ Z Im (2Dpu)Re (ﬂDhu)‘ <

h=1
/ |u|p%4
Rn

(/Rn|up_4};(Re (11Dhu)2)§ (/Rn \u|”_4h§1(lm (ﬁDhu)2)§ = AB

Re (aDu))‘ |22

Im (ﬂDu))’ <

and so
‘Im Au-u*| < |p—2|AB. (2.18)
Rn

If 1 < p <2, we get the same estimates (2.17) and (2.18) by approximation, using the
functions u* = a(|ul?> + 6)*= and letting § — 0.
Now we look for the smallest positive v such that

Ip = 2|AB < [(p — 1)A* + B]
for all A, B. Since for such 7y we have that

A? A
70(p_1)ﬁ_|p_2|§+70 >0

for all A, B, then (p —2)% —4(p — 1)7¢ < 0 and so

o> P =2
O=o/p—1

Setting Au - u” dx =: x + iy, we have obtained
R’Vl
<
{ z<0 (2.19)
ly| < 7]zl

for v > v9(p). Define ¥y = m — arctan g, ¢ < ¥ and prove that p(A) D Xy.
Let ¥ < ¥ and consider A € ¥y and u € C§°(R"™), with |lu|z»@w») = 1, so that
[ull Lo (mny =1 = (u,u*) pp - Then, by (2.19) we get (Au,u*);, 1, € C\ Ey,, hence

[Au — Aullprrny > [(Au — Au,u™) 1y 1| = [A = (Au,u™) pp o]
> dist(\, C\ Zg,) > Cgl|A|.

By density, we deduce

[Au — AuflLerny = ColAll|ull Lo ®e) (2:20)
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for all u € W2P(R"). Now, using the Fourier transform we prove that A\ € p(A). The
injectivity of A — A follows from (2.20). By (2.13) and using inequality (2.20) we have

[ullwzr@mn) < cl[ullLe@ny + [[AullLorn))

< c(lull Lrmny + M wll e @ny + | A — Aul| o (gn))

= c((1+ [AD|ull e @) + | Au — Aul| Lo (rn))
where the constant C' depends on p, ¥, A. Now, inequality (2.21) and the closedness of A
in W2P(R") imply that (A — A)(W?2P(R")) is closed in LP(R"). We have only to prove
that (A — A)(W?2P(R"™)) is dense in LP(R™).
Consider the space S(R™) which is dense in LP(R™) and prove that

VfeSMRY Jue WHP(R™) such that (A — A)u = f

Now, the solution in W2P(R") of Au — Au = f is the function u € S(R™) whose Fourier
transform is

~

f
A g

ﬂ, =
This shows that
(A= A)(W>P(R")) 2 S(R")
hence it is dense in LP(R"™). O

The previous theorem implies that the realization of A in LP(R™) is a sectorial oper-
ator.

Corollary 2.2.3. Let 1 < p < oo and X\ € C with Re A > 0. Then for every f € LP(R™)
there exists a unique u € W2P(R™) such that

(A= A= f. (2.22)
Moreover
1
IAl[[ull Lo gy + A2 |1 Dull Loy + 1D ul| o ey < || £l Lo rny (2.23)

where ¢ depends on n,p.

PROOF. The result can be easily obtained from the previous one. By the estimate
(2.20) and (2.21) we deduce

IAllullze@ny < Cq I f e mn) (2.24)
I1D*ul Lo rny < C|IF Lo rn) (2.25)
and finally using the interpolation estimate (A.1)
v < o| D)2 2 <OV 2.26
IVl ey < ND%ull by g il oy < O 20 ooy (2:26)
Summing up (2.24),(2.26), (2.25) and redefining the constant we get the claim. O

Actually for what concerns the existence and the uniqueness of the solution of (2.22) in
R™ we state the following theorem (see for example [44] for details).
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Theorem 2.2.4. Let f € LP(R™), then for every X ¢ (—00,0] there exists u € W2P(R")
such that Mu — Au = f and the estimate

HUHWZP(Rn) S C(n, )\) ||fHLp(Rn)

holds.

In the following proposition we extend (2.23) to a more general operator than the Lapla-
cian.

Proposition 2.2.5. Let 1 < p < oco. Then, there exist wg € R, M, > 0 depending on
n,p, p, M such that if Re X > wy, then for every u € WP(R") we have

1
Ml e ey + X2 1Dl oy + 1D*ull Lo (o) < MyllAu— AC, D)ullpogny  (2:27)

PROOF. Let £ the operator in n + 1 variables defined by
E(x,t,D) = A(z, D) + ¢ Dy, (2.28)

with 6 € [—7/2,7/2]. Tt satisfies the uniform ellipticity condition (2.8) with constant
pe = /2. Indeed, it is obvious that |A%(z, &) 4+ e*n?| < u(|€)? +n?) < uv2(|€] + n?);
for the converse inequality, we look for ug > 1 such that

(A% (2, &) + 0P| = pg ' (1€ +n?) (2.29)
for all z € Q, (&¢,17) € R"® x R and for every 6 € [—7/2,7/2]. We observe that

A (2, €) + %] = [((AE, &) +1° cos )2 + n* sin® 6]

[((A&, €))% +n* + 2072 (AL, &) cos 6] /°

1
> (?|f|4 + )2

Since we look for a pg such that (2.29) holds, if
1 _
(Elﬁ\4 +0)Y2 = gt (€ P

or equivalently using that 2|¢[2n? < |¢* + n*

2 (el + ) < — el + o (2.30)

11z I

holds for all (§,17) € R™ x R we conclude. Now, it is easy to see that if pg satisfies

2 1y
pg o op? T
2

S —1<0

Mg
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that is if pe > pv/2, then (2.30) is proved.
Let n € C°(R) be such that n = 1 in [f%,%] and suppn C [-1,1]. For every u €
W2P(R™) and r > 0 we set

v(t,z) = n(t)e u(z) teR,zcR" (2.31)
Then
Ev=nt)e (A - e¥r?)u+ O (1 4 2iry )u.
Now, we can prove (2.27). Estimate (2.13), applied to the function v implies that there

exists C' = C(n,p, u, M) such that

[vllw2p a1y < C [[[0]l Lot + [E0]| Lo a1y
< Cllull e
+ ne (A= €r?yu+ e (" + 2irn )ul| Lo g
< C [llullzr @y + 1A = 7))l Loy + (1 + 27)[|ull o)
<O [+ ) |ullrr@ny + (A= ePr?)ull Lo @ny] - (2.32)

On the other hand, since n =1 in [—3, 1], then

[l gerrsy 203,40 / [ 3 i ute)lPdsd: -

|| <2

:/ [(1+rp+r2p)|u\P+(1+2rp)z\pju|u S Dyl da

j=1 7,k=1
> TQPHu”]zp(Rn) + rp”Du”Zzp(Rn) + ”DzUHip(Rn)- (2.33)

Taking into account (2.32), it follows

7“2||UHLP(R") + THDUHLP(R") + ||D2u||LP(R")
< 3l[vllwep@nery < 3C [(1+7)uflLo@n) + [I(A = r?)ul| o @m)] (2.34)

where C is like in (2.32). We can select r sufficiently large such that r? —3C(1+r) >
we get

L
2

1 3
57 lullzen) + 7l Dull e ey + [ D*ull Loy < CIIA = €r*)ullpomn) (235

Taking A = e¥r? we get (2.27) with M, = 6C. O

Now, by using the continuity method (see Theorem 1.5.3) we are able to prove exis-
tence and uniqueness for the solution of

M — Au = f € LP(R")

for A € C with Re A large enough.
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Theorem 2.2.6. Let 1 < p < co. There exist ©g € R, C > 0 depending on n,p, u, M
such that if Re A > &g, then for every f € LP(R™)
Au—Au=f

has a unique solution u € W2P(R™) and the following estimates hold

_ C
[(A—A4p) 1||£(LP(R")) < W; (2.36)
1 C
IV = A4p)  ler@mny) < N ; (2.37)
ID*(A = Ap) Hlewr@ey) < C. (2.38)

ProOF. We consider the Banach spaces
X =W?**R"), Y =ILPR")
and the operators
Lo=XA—A, Li=X—-A, Li=Xx—A :=X—[(1-t)A+tA].

We can observe that A; satisfies (2.4) with p; > p and the constant in (2.12) for A,

My <(1vM).

Moreover, by Corollary 2.2.3 we know that the operator L is invertible for Re A > 0,

and by the Proposition 2.2.5 applied to the operator A; := (1 — t)A 4+ t.A we get that

there exist wg € R and M,, depending only on n, p, i1, M, X such that for every Re A > wq

and ¢ € [0,1],

[ullwzr@ny < Mpl|(A = A)ull Lo mn).-

Since the hypotheses of Theorem 1.5.3 are satisfied we get the invertibility of the operator

L; =X — Afor ReX > @y := sup{wy, 0}.

The estimates (2.36), (2.37) and (2.38), are immediate consequences of Proposition 2.2.5.
O

In view of Theorem 2.2.6 and Proposition 1.2.7 we have shown that the operator A,
defined in (2.15) is sectorial.

2.2.2 [P-estimates on domains

In this section §2 will be either a smooth open subset of R" or the half space R’f. We
suppose that A, B satisfy assumption of Section 2.1. In this case we define

D(AD) ={u € W*?(Q); B(-, D)u = 0 in 99},
ADu = A(-, D)u, u € D(AD). (2.39)



39

AB is the realization in LP(€2) of A(-, D) with homogeneous oblique boundary condition.
In order to prove that Af is sectorial we prove that its resolvent set contains a complex
half plane and the resolvent estimate (1.3) holds.

Here also we start with the simplest case of the Laplacian in the half space R. The
crucial points are

(i) to show an a-priori estimate for Af,

(ii) to solve the Neumann problem in R}.

By means of the continuity method we deduce existence and uniqueness in R’} for the
problem related to A with a boundary operator like B. Finally, using the regularity of
the boundary 92, we deduce an analogous result in the domain €.

We need to prove an estimate like (2.27) for the resolvent of the operator Af as next
proposition states.

Proposition 2.2.7. Let Q) be an open set with uniformly C? boundary. Then there exist
w1 € R, M, > 0, depending on n,p, u, M,§), such that if ReX > wy, then for every
u € W2P(Q) we have, setting g = B(-, D)ujsq,
1
Ml o) + A [|Dul| Lo o) + 1 D?ul| ooy <
My Au— A(, D)l ooy + A2 llg1 1l ) + 1 Dgi || e o) (2.40)

where gy is any extension of g belonging to W1P(Q).

PRrROOF. The proof of this result can be obtained as in Proposition 2.2.5, using now
estimate (2.14) instead of (2.13) in  x R. Let g; be any regular extension to £ of the
trace (B(-, D)u)pn. Then (2.32) has to be replaced by

[vllw=r@xry < C1 ([0l Lr@xr) + 1€0]| Lo@xry + 1€ gillwir@xwr))
< O((r+ Dlul Loy + 1A = e“r)ul oo
+ (r+ Dllgrll e @) + [1Pg1] e () (2.41)
where C' = C(n,p, u, M). Accordingly, (2.34) has to be replaced by

7 |lull oy + 7| Dull o) + 1D*ul| Lo (o)
< 3[|vllwerxr) < 3C[(L+7)|lull o) + I1(A — €r2)ul| o (q)
+ (r+ Dllg1llce @) + 1Dg1llLe ()] (2.42)

As before taking A = €r? with r sufficiently large such that 3C(1 + r) < % we get

(2.40). O

Proposition 2.2.8. Let 1 < p < co. Then there exists wo € R depending on n,p, such
that if ReA > wy and f € LP(RY) the problem

Au—Au=f in R
ou ) n (2.43)
87% =0 m 8R+



40

has a unique solution u € W*P(R'}). Moreover there exists a constant c¢(\) = c(n,p, A)
such that

lallwesgmg) < cOVFllome)- (2.44)

PROOF. Uniqueness and (2.44) are consequences of Proposition 2.2.7. Concerning
the existence, we consider the even extension of f with respect to the last variable

f@ x,) = {f(m 'Tn)  Tn 20

f@', —x,) 2, <0

By Theorem 2.2.2, for Re A > 0 there exists a unique solution @ € W2P(R") such that
M\i — A = f. Now, it is easy to verify that the function wu(z’, z,) := @(a’, —x,) solves
the elliptic problem Au — Au = f in R™, and, by uniqueness, u = u, that is, u is even in
Z, and so %(x’, 0) = 0. Therefore for Re A > sup{w;, 0} =: wo, the restriction of @ in
R’ is the unique solution of (2.43).

O

The following theorem extends results of existence and uniqueness of problem (2.43) to
a problem where A replaces the Laplacian and more general oblique boundary conditions
are considered.

Theorem 2.2.9. Let 1 < p < oo. We assume that i,y € UCL(RY) and that the
uniform non tangentiality condition

dnL, 6(). )] > 0 (2.45)

holds. Then there exists w3 € R depending on n,p,p such that for every f € LP(RY)
and Re A\ > w3 the problem

A — Au = f in R}

Ju . n (2.46)
5‘75 +yu=0 in ORT}

has a unique solution u € W*P(R".).
Proor. We set
X =W?*P(R}) Y =LP(R}) x WHP(R™1)

and consider the operators Ly : X — Y so defined

Lgu = ()\u —[(1—s)Au+ sAu], (1 — 5)% + s(yu + g—g)), s €[0,1],
where v is the exterior unit normal vector to the domain, that is v = —e,,. We notice
that
(1 )au . ou Ou
ov op  or
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with 7 = (1—s)v+s0 satisfies (2.45) independently of s. Moreover A; = (1—s)Au+sAu
satisfies (2.4) with ps > p and M, < (1V M), therefore we can ignore the dependence of
those constants by s. Hence in (2.40) the constant M), can be chosen independently by
s and the estimate

ILeully > My ullx

holds for every s € [0,1]. By Proposition 2.2.8, L is surjective, therefore by Theorem
1.5.3, L, is surjective too. O

The hypothesis of smoothness of the domain suggests to go back by means of local
charts to balls or half balls of R™ and to apply the results obtained before in order to
get the same result in 2 as the next theorem states.

Theorem 2.2.10. Let Q, A and B be as in (2.1)-(2.7). Then there exists wy depending
on n,p, i, such that if Re A > wy and f € LP(Q), the problem

{ Au—A(,D)u = f in Q (2.47)

B(-,D)u=0 in 09

has a unique solution u € W2P(Q). Moreover there exists C' = C(n,p, pu, M, ) > 0 such
that
1
Mllullze) + A2 [1Dull o) + [D?ull o) < CllfllLe)- (2.48)

PROOF. Observe that if we prove the existence of a solution of (2.47) then uniqueness
and estimate (2.48) follow immediately from Proposition 2.2.7. Indeed the estimate

IMullzr ) < Mil|Au — Aull Ly ()

yields the injectivity of A — Af . Thus, we have only to prove the surjectivity of the
operator A\ — Af.

By the regularity of the boundary 99 we can consider a partition of unity {(n?,Us)}nen
such that suppn, C Up, Y peoni(z) =1 forevery 2 € Q,0 < np, < 1and ||nsllwe= < ¢y
for every h € N. Moreover let (Up)nen be such that Uy CC Q, Uy, for h > 1 is a ball
such that {Up}r>1 is a covering of 990 and {Uj}ren is a covering of € with bounded
overlapping, that is, there is kK > 0 such that

> xv.(2) <k, VreQ (2.49)
heN

Moreover there exist coordinate transformations ¢y, : Uy, — B(0, 1), C? diffeomorphisms,
such that
en(UnNQ) =B7(0,1)
on (U, N 0Q) = B(0,1) N {x,, = 0}.
Moreover, all the coordinate transformations ¢y and their inverses are supposed to have
uniformly bounded derivatives up to the second order,

sup Y (ID%nllse + D%, o) < € (2.50)

1<]al<2
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Let f € LP(); then we can write f = Y 7o n7f. We notice that nof € LP(R"),
supp (nof) € Up. Thus if we extend a;;,b; and ¢ to the whole space R™ in such a way
that their qualitative properties are preserved, to the extension A we can apply the
Theorem 2.2.6. Hence there exists @y € R such that for Re A > &g the operator \ — Ais
invertible in LP(R™). Therefore if R(\) : LP(R™) — W?2P(R") denotes the resolvent of
the operator A, in R", we can define

Ro(A)f = noR(A)(no.f)-
Then supp Ro(\)f C Uy and Ro(\) : LP(2) — W2P(Q2) and
(A= ARNF = (A= AR )
= oA = AR () + (A= Aol +n0(A = A)) (R(A) (1m0 f))
= 0o f + A= AnolR(N)(nof)
where [X,Y] = XY — Y X is the commutator of X and Y. Letting
Sno(A) := [A = A, noIJR(X)no

we can write
A=A RN f =5 f + Spe(N) -
It is immediate to verify that [\ — A, nol]g = —[A,nol]g. Moreover

N n
—[A,noTlg = =2 > ankDunoDig — g( Y (Di(ai;Dyno) + bi Dino)
ho=1 ij=1

If we define By = [A — A, nol], we observe that By is at most a first order differential
operator whose coefficients depend on those of A and the function n9. We have

1BogllLr(2) < C(M, cy)llgllwrr ) (2.51)
Hence, using (2.51) and estimates (2.36), (2.37), we get
180 (M) fll ey = 1Bo(A = A) (0 f)| o (o)
< C(M, c)[(X = A) " (o f)llwre e

C
< W””Of”LP(Q) (2.52)

where C' = C(n,p, u, M, c,;,2) e Re X > @g. So for S, () we get the following estimate
1m0 (Ml 2(zr(ey) < CIAITV2.
Now, we consider the case h > 1. Let

un(y) = () (5, (v) = Tu(mnf)(y)

then v, € W?2P (R%). We denote by Ay, the operator in Rl determined by the change
of variables given by ¢,

Apw := div(A, Dw) + (B, Dw) + éw (2.53)
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defined by the coefficients (here for A and its coefficients we omit the index h to simplify
the notations)

An(y) =(Den) (95" () - A ) (Den) (1" )
(Bu(y)r =Tr [ (Den) (2 (y > < <y>> leh( ) (Do) )]
+Tr[(Dsoh)( ](Dsoh W) - 8(; [%z(y)]

+ [(Dsoh)(wﬁl(y)) - Blgr" ()
én(y) =cley ' (1))

l

where HL, = D?,(¢n); and G, = Dyaqij (5, (y)). We remark that A(n,u)(z) = Anva(y).
For what concerns the boundary condition we get
B(nnu)(x) = B(z) - D(nnu)(x) +~(2)(mnu)(z)
= [(Den) (6 1)) - Bl ()| (Dun) () - Dlmu)(@) + (5 () o (v)
a’Uh
0B
where 3(y) = {(D(ph) (' (y)) - B(gp;l(y))} and Dypy, denotes the Jacobian matrix of ¢y,

and §(y)
define

—(y) + 4vn(y) = Broa(y)

v(¢;,*(y)). Now, since 3 is not tangent to 9, (3 is not tangent to R . We

BN = T (Tum) (3 = A) ™ T ))

where (A — Aj,)~! is the resolvent of Ay in R’} with the boundary condition Bpvy, = 0.
Then Ry (\) : LP(Q) — W?2P(Q) with BR,()\)f = 0 in 99 and supp (Ri(\)f) C Up. We
get

A= A)Ru(Nf =0 f + Sy (M) f

where Sy, (\) = T, (I3 = A, T )\ = An) = (T () ).
As before for Re A sufficiently large

150 N fllo @) < ey, M2 ) N2 l0n fl o 0 (2.54)

Finally, letting
V)= > Ru(\):LP(Q) — W>P(Q)
heNU{0}

observe that BV (\)f = 0 in 99 and

(A= Nf= Znhf+zs77h )f = f+Zth

Hence

A=AV : LP(Q) — LP(Q)  and  (A— AV —I+anh
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Now, let observe that we can select A with Re A sufficiently large such that

—_

| anh e @) < > (2.55)

indeed, since each S, has support contained in U and the covering {U;}; has bounded
overlapping (2.49), then

HZth f||LPQ)<Z/|Zth ) fIP dx

Ui h=0

_mzj 1P do < el

where ¢ = ¢(M, ¢, ,Q). Then, (2.55) ensures that for Re A sufficiently large, the opera-
tor I+ > ;7 Sy, (A) is invertible in LP(Q) with inverse W(X) : LP(2) — LP(12). Hence,
since (A — A)V( AW (X) =1 in LP(Q) and u = V(N )W (\) f € W2P(Q) is the solution of
(2.47) for Re A large enough. O

2.3 Generation of analytic semigroup in L*({2) and in
the space C(Q)

Henceforth ) will be a domain with uniformly C? boundary and we set, for zo € R"
and r > 0,
Quo.r = QN Bz, 7). (2.56)

Our aim is to prove that the realization AZ of A in L with homogeneous oblique
boundary conditions as in (2.5)-(2.7) is a sectorial operator. In order to reach this
we need that p(AZ) contains an half plane and that an estimate like |Al|ju|p () <
c||Au — Aul| o () hold for Re X large, A € p(AZ). An important tool for the proof of the
resolvent estimate in L°° is given by the following lemma in which a Caccioppoli type
inequality in the LP norm is stated.

Lemma 2.3.1. Letp > 1 andu € VVif(Q) For every \ with Re A\ > wy (w1 is given in
Proposition (2.2.7)), set f = Au — Au and g = Bujgq. Then there exists C1 depending
only by n,p, pu, M and Q such that for every xo € Q, r <1, a > 1,

1
|)‘|||UHLP(QIO,,.) + A2 | Dullprq,, ) + HDQuHLP(Q

- o)

1
S Cl{HfHLP(QmO,(aJrl)T) + (|)\|1/2 + a)”gl”LP(on,(a#»l)r) + ||Dgl||Lp(on,(a+l)r)

1,1
+— |5+

«

|)\|1/2

)Hu||LP(Qm0,(a+l)7‘) + r_l DuLP(QmD,(a+1)r):| } (257>

where g, is any extension to Q of Bujpq of class Wlif.
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PrROOF. Let 6y : R® — R be a smooth function such that g = 1 in B(0,r),
supp 0o C B(0, (o + 1)r) with

||60||L00(Rn) + CMTHDG()HLoo(Rn) =+ 0427'2HD290||L°0(R“) < K
where K does not depend on o and r. We fix ¢ € Q, we set 0(z) = p(z — z¢). Define
v(z) =0(z)u(z), =€

then v satisfies the following equation

AU — A(, D)U = 9f -2 Z aijDiODju — u( Z Di(aiijO) — Z szla) = f/ (258)

i, ij i=1
and the following boundary condition
Bu=0g+u» (D inoQ
i=1

Now, since Re A > w; and u and v coincide in {2, ., using Proposition 2.2.7 we get

IMllllzr .y + X2 1Dull oo, ) + 1Dl oo

wg.r)

1
< |Allze @) A2 Dol Loy + 1D%ull Lo (o)

< Myl 'l zo () + INY211091 + 1Y BiDibl| 1o ()

i=1

+[[D(0g1) + D(“ZﬂiDig)HLp(Q))- (2.59)
i=1

Set Co = max|lai; w1 (@) + max|bi| (o).

Then

2
1 e < 1 lr @y i) + CoK(a||DU||LP(QIO,<Q+1)T)
1 1
t ozl e + o lullzr@,, o) (2.60)
Moreover

A2l BiDibll oy + 1D(w) ] 5i:Dif)| ooy

i=1 =1

- K
< MI”QZ IIﬂiHooaIIUHLp(mO,(aH),.)
i=1

N
K K
+ 3 (1Bl + 18illo0 =55 ) Nl 2oty o
i=1

-~ K
+ Z II@-||ooJHDUHLP(Q%WW
=1

SCK[(IA”Z?

1
X Mellzo @, i) + NPy ] (261)

r r2
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where C = >"" | ||ﬂi||cl(§)’ and

2109110 () + 1D(0g1) L (0
K
< 219100 o) + o lglze@e, i T 1D9lr @, 0iny)  (2:62)

Taking into account that » < 1 and « > 1, replacing (2.60), (2.61) and (2.62) in (2.59)
we get the claim. O

As a consequence we get the resolvent estimate as the following theorem states.

Theorem 2.3.2. Let p > n. Then there exists K > 0 depending on n,p, u, M,Q, such
that for every X € C with ReX > A}, = wy V 1 (wy is given in Proposition 2.2.7) and for
every u € CHQ) NW2P(Q)

loc

IM[ull oo () + A2 Dul| oo 0y + [A"/2 sup || D?ul (o

rocQl wo,IAI’I/Z)
< K ("2 sup | = Aullpoia )
:E()Gﬁ iCHa
+ INY2lg1ll @) + N2 sup [Dgrllieca,, |, 2m)s (2.63)

ToEN

where g1 is any extension of g = Bujpq belonging to Wllo’f. Moreover, there is K > 0
such that if Au € L>(Q) and Bujpg € C*(8Q), then

|)‘|||UHL°C(Q) + |)‘|1/2HDUHL°°(Q) + |)\|n/2p SUE||D2U||LP(Q
o EN

< ZN((H/\U — Au| o) + \/\|1/2HBU||C(SQ) + ||Bu||C’1(BQ))~ (2.64)

101|)\|71/2)

PROOF. Let zp € Q, [A| > 1, ReA > w; and 7 = |A|”2; then using the Sobolev
inequality (i) of Theorem 1.5.2 we get

1 n
Mlull Lo 9., ) + A2 1Dl L= @, ) + A | D*ull oo

@g,7)
< 20 + DINF (Alull oy o + M IDuloa, o + 1D%ul oo, ) )
Now, using Lemma 2.3.1, we get, for every a > 1,
B (IMllr @,y + A DUl o0, ) + 1D?ulogen, )
< N laoan + N2 (14 ) llar e
+1Dg1zr@) + = (Mllelze@y + N2 1Dul o)

< CUNFIf | Lr(@q) +wn/ (e + D)™ PN llg1]| L= (o)

1/p n/p

w a—+1

wi (ot DV ) (Ml o< (92) + [A[V2 ([ D]l oo ()
o

(2.65)

+ A [1Dg1ll o0, + (
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where Q4 = QN By(xg) = QN B(zg, (a + 1)|\|7*/2?). Therefore

1 n
Ml oy ) + AZ DUl o 0, ) + N 1Dl 1o, )
< ClINE | fllor(u) +wn/P(a+ DN lg]| s o)

leL/p(a + 1)"/p
o

+ A% [ Dg1| o) + ( )(IMllull L= @) + A2 Dull = (0.,)) - (2.66)

where C is a constant depending on p,n, i, Q. Taking the supremum over zo € Q of the
three addenda on the left hand side of (2.66) and summing up we get

IAl[ll Lo () + A2 Du| poe @) + |A[? SUBHD2UHL1’(Q$

ToEQ UY‘Mil/Z)
n % (Oé + 1)% 1
< C(INF sup 1 flls(an) + k= (Alllull ooy + 1A [ Dull e (o)
zo€EN
+wp/Pa+ )P il e o) + [N sup [[Dgillie o))
zoEQ
Taking « sufficiently large in such a way that
1 n
cop ot 1
2
we obtain
1 n
Mllullzs o) + AZ I Dull Loy + A2 sup [D?ullio, | o)
xoEN ’
< 2C(IA|%F sup || fllzo(an) + IA2llg1ll Lo () + A% sup [ Dgillroa.))
:E()Eﬁ :E()Gﬁ

Finally we can obtain (2.63) covering each ball B, (zo) with a finite number of balls with
radius |A|7 2.
To prove (2.64) we use (2.63), which implies

Il ) + A2 Dull s ) + (A" sup || D*ull 1o

. ,A—1/2)
20€Q ELRIRY

< Klwy/? (0 = Aull @) + [ Dgille @) + N2t )]
Finally, choosing g1 = E(Busgq), where E € L(C(99Q),C(Q)) N L(C1(8Q),C (Q)) is an
extension operator we get the claim. O

Next theorem, together with the resolvent estimate (2.64), is sufficient to prove the
sectoriality of the realization of A in L* () so defined

D(AE) = {u e Moy WEP(Q):  u, Au€ L®(Q), Bujpq = 0},
ABu = Au.

Theorem 2.3.3. The operator AZ : D(AB) — L>(Q) is sectorial. Moreover, D(AZ) C
CLe(Q), for every o €]0,1].
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PROOF. Fix p > n. Let Ag = inf,5, Al; then we prove that the resolvent set of A%
contains the half plane {\ € C; Re A > Ag}. First we show that the p(AZ) contains the
half plane {Re A > A}}. For any f € L>(2) and k € N, let ¢4, be a cut-off function such
that

0<¢p <1, =1 in B(0,k), =0 outside B(0,2k).

We consider fr = ¢, f. Now, if Re A > A}D, then, by Theorem 2.2.10, the problem

{ )\uk - ,Auk = fk in Q (267)

Buy, =0 in 0f)

has a unique solution u, € W?(Q) and |lug||w2.r ) < C||frllLr(q) Where C'is a constant
depending on A\, n,p, M,Q and p. In particular, by the Sobolev embedding theorem (see
Theorem 1.5.2), uy, € CL(2), therefore using (2.64) we get

lukller ) + sup [1D*ukllzri, | 2ue) € KO fellze@ < KO fllze@).  (2.68)

xo€EN

Therefore, {uy}x is bounded in C'(Q), so that there exists a subsequence converging
uniformly on each compact subset of Q to a function u € C(2) N Lip(2) such that

[ullLo @) + [Ulipi) < KN fllpe(0)- (2.69)

Now, we show that u € VVlQOg7 (©) and that it solves

A — Au = f in Q
Bu =0 in 00

Let B(zg, R) be the closed ball with zo € Q and R > 4|\|7'/2, then by (2.68) we know
that {uy}x is bounded in W2P(€,, r), so that the limit function u is in W2P(Q,, g).

Since z¢ and R are arbitrary, u € Wi’f (€2). Moreover there exists a subsequence {ugx) } &

converging to u in W1P(Q,, r), and for h, k sufficiently large
{ AMug(ny = tgry) — AlUpn) — Ugry)) =0 in Quy r
Blug(n) = ugy) =0 in 90N Byy i

Now, applying Lemma 2.3.1 to the function ugp) — ugk), we get

lugny = womllw2o@, | 1) < CNlugm) = ugmyllwie, | 1)

< CW)lugny — ugrllwin(,, n) =0 as h,k — oo.

Covering B(zg, R/2) by a finite number of balls with radius |A|7*/% we get that {ug)}
converges in WQ’p(QmO’R/g), so that, letting k — oo in (2.67) we get A\u — Au = f in
Q:Eg,R/Q'

Moreover since the trace operator u — ugr is continuous from W1 (T") to LP(9T",dH™ 1)
for every open subset I of R™ with bounded Lipschitz boundary, then B is a linear and
continuous operator from WQ’Z’(QIO)R/Q) to LP (084, r/2), hence we get

1B(ur — w)llLr(00nB(w0,r/2) < Ctllur = ullwzr,, q)s
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where ¢; is a constant depending on 2, R and by ||3i]| o (), [|7[| o (@)- Therefore we get
Bu =0 in 02N B(xg, R/2). Since zg and R are arbitrary, then

Au— Au = f in Q
Bu =10 in 09

Now, fixed any ¢ > n we can write (2.67) as follows
Auy — Auy, = (Aq — Nug + fr-

We observe that the right hand side is in L*°(2), and its sup norm is bounded by a
constant independent of k. Repeating the above arguments we conclude that u € I/Vlicq Q)
for all ¢ > n, so that u € D(AE). Therefore p(AZ) > {x € C: ReX > AL} for every
p > n. Thus, from estimate (2.64) and Proposition 1.2.7 we conclude that AZ is sectorial.
Now, let u € D(AZ), then by the Sobolev embedding u is continuously differentiable
and its gradient is bounded: indeed, fixed p > n and f = Apu — Au, by estimate (2.69)
we get

[1DullLe (@) < c(llull Lo (@) + [[AullL= ()
Moreover, choosing p = n/(1 — «), using Theorem 1.5.2 (inequality (ii)) and (2.64) with
A=A, we get, fori=1,...,n,
[ Diu(z) — Diu(y)| < clz —y|*([ull L= @) + [|Aull L= (o))
for all z,y € R™ such that |z —y| < (A1)~!/2. On the other hand, if [z — y| > (A})~1/2
then

|Diu(x) — Diu(y)|
|z —yl*

< 2[|Dsul| oo ey (A;)Q/Q
< c([lullpoerny + [[Aul| Lo mn))

Therefore, D(AZ) c C*(Q) for a €]0,1].

From Theorems 2.3.2 and 2.3.3 we get the following result.

Corollary 2.3.4. Let Ay be as in Theorem 2.3.3. Set

loc

D(AE) = {u € M,s1 WP (Q):  u, Au € Cy(Q), Bujpg = 0},
ABu:D(AB) — Cy(Q), AE = Au.

Then the resolvent set of AS contains the half plane {\ € C; ReX > Ao}, and AZ is
sectorial.

PrROOF. Since D(AZ) c Cy(Q), then p(AZ) C p(AB). Therefore p(AE) contains
the half plane {ReX > Ag}. Estimate (2.64) and Proposition 1.2.7 prove that AZ is
sectorial. O
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2.4 Elliptic boundary value problems in some Sobolev
spaces of negative order

In this section, as in the preceding one, we suppose that €2 is a domain with uniformly
C? boundary 9. Here our aim is to prove existence, uniqueness and some useful esti-
mates for the solution of a boundary value problem for an elliptic operator A in suitable
Sobolev spaces of negative order. Actually, we are interested in deducing L' norm esti-
mates of the gradient of the resolvent of the realization of A in L' (see Theorem 2.5.3).
This can be done by duality starting from the solution of the dual problem.

In this section we follow, with significant modifications, ideas from [47], [48]. Before
stating the main result, let us introduce some notation.

Let 1 < p < oo; we shall consider the Banach spaces (Wy*(€)) and (W'r(£))
respectively denoted by W~ (Q) and W{l’p’(Q) (we set 1’ = o0). Each element
few=tr'(Q) (resp. f e W{l’p/(Q)) admits a (not unique) L representation; that is,
there exist fo, f1,..., fn € Lp/(Q) such that

(f,v)s :/Qfoudx—l—Z/inDivdx (2.70)
i=1

for every v € Wol’p/(ﬂ) (resp. v € W' (Q)), where (-,-), denotes the duality between
W—LP and Wol’p (resp. W, P and Wl’p/), see [1, Theorem 3.8]. In order to indicate an
LP" representation of f we often write

f=1J— ZDifi (2.71)
i=1

where the equality has to be intended in the distributional sense specified in (2.70).
Obviously (W'P(£2))’ is continuously embedded in (W,”(£2))’, and there is a natural
embedding of L (Q) in (W'P()): we can identify any L?" function fy with the func-
tional

UH/glfo(x)v(x)d:C.

We can consider these spaces as Banach spaces endowed with either the norm induced
by duality or the norm defined by

n

inf {Z | £ill Lo () fi satisfying (2-70)} :
i=0

In the following lemma we prove some useful estimates that hold in these spaces.

Lemma 2.4.1. For each p > n there exist two constants cy,co such that for each xy € Q,
r >0 and u € LP(Q) with support in Qy, » (given in (2.56)),

lally -1y < errllullzogey (2.72)

el ooy < ™™ Pl ooy (2.73)
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PROOF. Let ¢ € W' (Q) be such that [|¢]|yy1. (@) < 1. Then by Sobolev embedding
@ € LY(Q) with ¢ = (np’)/(n — p') and ||¢||La(n) < ¢ where ¢ depends only on 2. Hence

fulho ey = { [ updes ¢ € W@, Tellynro <1

but the following estimate holds
AWWSMW@WWM@SWMmm

and (2.72) is proved. In a similar way one can prove (2.73). O

Here, in order to obtain a precise estimate for the L> norm of the solution of an
elliptic boundary value problem in W, 1’OO(Q)7 we follow a procedure similar to the one
used by Stewart in [42] and in [43] starting by W, "P(Q), 1 < p < .

2.4.1 Formally adjoint boundary value problems

Let A and B be the operators defined respectively in (2.1) and in (2.5) satisfying (2.4)
and (2.7). Let consider the elliptic problem (2.11); we are interested in the formulation of
its formally adjoint boundary value problem, hence, (at this moment) we do not take care
of the smoothness properties of the coefficients and we proceed by formal computations.
We define the formally adjoint differential operator A* of A by

A" =" Dj(a};Di) + Y biD; +c* (2.74)
ij=1 j=1
with
aj; =a;; b =—b; ¢ =c—divb.

Then by the divergence theorem
/ vAudr = / uA*vdx +/ ((ADu,v)v — (ADv,v)u+ (B, v)uv)dH"
Q Q a0

for all u,v € C?(Q) N CHQ). We let vy := Av and p(z) = %, and define a

vector field by
T:=v4 — pp.
We observe that (r,v) = 0 and that

(D,va) = p(D,B) +(D,). (2.75)
Since p(z) # 0 for all x € 99, we can define 8* by

pB* i=va+T
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so that
(D,va) = p(D, ") = (D,T). (2.76)

We see that 5* so defined is a non-tangent vector field on 99, indeed p(8*,v) = (v4, V).
From (2.75) and (2.76) we get

(ADu,v)v — (ADv,vyu = p(v{Du, f) — u(Dv, %)) + (D(uv), )
Finally we define v* by
oy = py—(B,v) +divr
and the formally adjoint operator B* of B on 02 by

B* = BDi+7". (2.77)
=1

Finally, applying the divergence theorem, we obtain

/v.Auda:z/u.A*vdx—i—/ p(vBu — uB*v) dH" !
Q Q a0

for all u,v € C%(Q) N CH(Q).

Henceforth we focus our attention to a particular choice of the boundary operator 5.
We select the conormal boundary operator

n

B(z,D) = Z a;j(x)vi(x)D;, (2.78)

ij=1
in this way the formally adjoint operator B* is defined as follows
B* = (D,va) - (B,v)

(since p=1,7=0, f* = vy and v* = —(B,v)), and A* is defined in (2.74). We suppose
that a;j,b; and c are real valued functions such that

Q5 = Qji, Qg b; € WZ’OO(Q), cE LOO(Q) (279)

Assumption (2.79) guarantees that hypotheses in Section 2.1 are satisfied both for the
couple of operators (A, B) and (A*, B*) and Theorem 2.2.10 can be applied to each of
them. We set

My = H}%X{HainWloo(Q)v [0l w2 ()5 lell o< @) }- (2.80)

Now, we consider the realization of A with homogeneous boundary condition given
by B as in (2.78) in the Banach space Wy "%, so defined

E,: D(E,) = W'P(Q) c W bP(Q) — W, 1P (Q) (2.81)

by
(Bpu,v)y = a(u,v)  ue WHP(Q), v e WH'(Q) (2.82)
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where

a(u,v) = —/Q<ADU,D”U> dm—i—/ﬂ(B,Dude—i—/chvdm (2.83)

in WP (Q) x W' (). Analogously we could define the realization of (A*, B*) in Wb
in this way:

E, : D(E,) = W' (Q) c W ' (Q) — W' (Q) (2.84)
by
(Epu,v)y = a*(u,v) uwe WP (Q), v e WHP(Q) (2.85)
where
a*(u,v) = — / (ADu, Dv) dzx + / (B, Dv)u dx —|—/ cuv dx (2.86)
Q Q Q

in Whe' (Q) x Whe(Q).

We start with two technical results involving LP estimates that are true for both £,
and F, and that for simplicity are stated only in one case.

Theorem 2.4.2. The operator E, is sectorial in W*_l’p(Q). In particular there is a
constant w, € R depending on n,p, u, M1, such that for each A € C with Re A > w,
and for each f € Wi VP(Q) the solution u € W'P(Q) of the equation (A — Ayu = f
satisfies

Ml 10y + A2l o) + lellwir@) < Killfllw-1e g (2.87)

where K1 > 0 is a constant independent of A and f.

PROOF. Denote by AE the realization of A in LP with homogeneous boundary con-
ditions Bu = 0 and analogously A*ﬁ* the realization of A* in LP with homogeneous
boundary conditions B*u = 0. We know that D(AP) = {u € W>P(Q2) : Bu =0 in Q}.
Then for each u € D(A*ﬁ*) and v € LP(Q), we have (A*f:*u,w = (u, (A*g)*@ where
(A*f/*)* is the adjoint of A*ﬁ* and belongs to £(LP(2), (D(A*ﬁ*)’) where (D(A*ﬁ*)’ is
the dual space of D(A*f,*). Note that the restriction of (A*ﬁ* )* to D(AF) coincides with
Af . Therefore, from the complex interpolation theory (see Theorem A.3.5), we have that
(A*f/*)* is a bounded linear operator from [LP(Q), D(AJ)]1 /2 to [(D(A*g*))’7 LP ()12
where [, -]; /5 is the complex interpolation space of order 1/2, (see Section A.3 for the
relevant definitions and results). Using [39, Theorem 4.1], which holds for domains with
uniformly smooth boundary, we can characterize the complex interpolation spaces in the
following way:

[LP(), D(A))]1/2 = WHP(Q)

[(D(A* D)), LP ()12 = [L (), D(A* )]y = (WHP(Q)) = WSIP(Q)  (2.88)

where in the first equality in (2.88) we have used (A.16). Therefore the restriction of
(A*f/*)* to the space WP(Q) is a bounded linear operator from W1?(Q) to W, P (Q)
and coincides with E,,.

Now, we show that there exists a constant k; such that for each A with Re A large enough,

(A= AE)AHL(LP,D(AE)) < k. (2.89)



54

Since Af is a sectorial operator, there exists w; € R such that for each A € C with
Re A > w; and for each f € LP(Q) the equation

A=Au=f
admits a solution u € W2P(Q) with Bu = 0 in 9 satisfying (2.48). Hence
lullpazy = lullLe@) + AUl Le@) < A+ [ADulle@) + [1f ]2 )

14 )|
<( Y
Al

for Re A large. Analogously, there exists a constant wy € R and k2 > 0, such that

+ D fllee) < Erllfllze)

[(A = A*ﬁ )_1HL(LP’,D(A*E,*)) < ko (2.90)
for Re A > wsy. Using (2.90) we get that
*B*\—11% __ «* B \x1—1 «B*
(A=A )T =[(A=A" ) € L(D(A, ), LP)

hence an argument similar to the previous one yields that the operator [(A — A*f}*)*l]*
belongs to L(W, "P(Q), Wh?()) and coincides with (X — E,)~h
Set K = ki + k2 and wp > w1 V wo; then, for every A with ReA > w, and for every
f € Wi hP(Q) we have that [[ul|ywrsq) < K| flly-1» ) where u= (A = E,)~' f. Then,
for every v € Wh?' (Q),

(f, U>* = )‘<u7 ’U>* - <Epu) U>*
Thus

(1, 0) ] < AT (B, 0] + (£, 0).])
< oA (llullwrr@ el o + 1y ol o))

< oA (K s ol @ + 1 =gy 1ol o))

Hence we have proved that

|>\|||U||W;1vP(Q) + ||u||W1:P(Q) < C||fHW;1vP(Q)~ (2.91)
Therefore, (2.87) is consequence of (2.91) and of the fact that
(WP (Q), WP (Q))1/2, = LP(Q)

*

for 1 < p < oo (see [46, Section 2.4.2, Theorem 1; Section 4.2.1, Definition 1]). O

Remark 2.4.3. We observe that if f € LP(Q2), then u = (A — E,)"'f € D(AJ) and
therefore Bu = 0 in 0€.

Lemma 2.4.4. Letp > 2 and f € W{l’p(Q) with f = fo — > i, D fi; then for each

A € C with ReX > w,, for each r < 1 and for each o € Q, the solution u € D(E,) of
the equation A\u — Au = f satisfies the following estimate

[ullwie,, ) < Ko {Z [ fill Lo (22 20) + T foll Lo (@0 20) + TWIUILvmmO,m} (2.92)
i=1

where Qg » is defined in (2.56) and Ko is a constant independent of A and f.
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PROOF. We point out that the space of functions

C,l={g9=90—Y_ Digi; g: € C{(Q)NL(Q), > givi =0 on 90}

=1 i=1

is dense in Wy P , because every f; in the representation of distributions in W, LP ag
in (2.71) can be approximated in L? norm. Hence, it is sufficient to prove the claim for
functions in C, 1. Then, passing to the limit in the estimate we get the claim for every
few P Q).

Suppose then that f € C 1 for each 79 € Q and r < 1, let § € C?(R") with 6(z) = 1
for |z — x| < 7, O(z) = 0 for |x — 29| > 27, |DO| < cr~! and (ADO,v) = 0 in 9.
Such a function can be obtained in the following way: first we consider a cut-off function
Y € C2(RM), (x) = 1in B(xg,r)NQ and ¢ = 0 in QN (B(xg,v/2r))°, then we modify ¢
in a neighborhood of the boundary making it constant in the direction Av in order that
(D¢, Av) = 0 in 0. Finally we recover the regularity and preserve the homogeneous
boundary condition by convolution with a family of mollifiers whose support is B(0, €)
with e sufficiently small. In this way the function w := fu satisfies the equation

w—-—Avw=E+F+G=g (2.93)

where

E=- i Di(aijuDﬂ) — En:bluDﬂ
i=1

4,j=1

F=- i aiijuDiQ

i,j=1
G=->_Di(0f:)+>_ f:Dib +0fo (2.94)
i=1 i=1

Thus, multiplying (2.93) by w and integrating by parts we get

/Q(AD(QU),D(QU» dx :/

u uar — — C 'LL2 i
[ (B.D(Ou)0ua /(A ) (0u)? d

Q
_ u? dx
+/Q<AD9,D(0u)>udx /Q<B,D9>9 d

_/<AD9,Du>9udm+Z/ 6,D;(0u) de
Q = Jo

+§/in(Di9)0udx+/Qf092udz (2.95)

We point out that in (2.95) all the integrals are on QN B(xg,+/2r). Now, using (2.4) and
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the properties of the function 6 we get

—1 2
pHIDUl L2 B oy < €Il 2 0nBag.var) T Z 1fillZ2 0 B oz

—|—/ (B,Du)02udac+/ (ADO, Du)0u dx
QﬁB("cg,\fr) QNB(x0,V2r)
+ / 02 f; D;u dx

Z ﬂB(wo,\[T

Finally, using the inequality ab < ca® 4+ €~ b2, we prove that there exists a constant ¢

depending on the norm of the coefficients of .4 and on the ellipticity constant p such that

[1Dull 22 (@B (o)) < C(Z 1fill 2B @o,var) T+ T_IHUHLQ(QOB(xU,\/Er))) (2.96)
i=0

which implies the statement for p = 2. By Theorem 2.4.2 applied to equation (2.93), we
get

n
[Oullwe@) < Kl”.‘]”w;l’P(Q) < Kl(z ||fiHL:D(QmB(zO’\/§7-))

1=0
A7 Y Mgl + Y10l L) 1l Lo (n (a2
ii=1 i=1
+ 3 ||aiij’U/Di9HW;1,P(Q)) (2.97)

ij=1

By the Sobolev embedding theorem, every test function ¢ € wie' (©2) belongs also to
L7(Q), with ¢' = np/(np — n — p), and (9]l (q) < Kkl o) with k& = k(p, Q).
Therefore, by (2.96) for 2 < p < 2n/(n —2) if n > 2 (for every p if n < 2), we get

||aiijUDi9||W*’1’p(Q) < 07"_1HDU||an/(n+p)(QmB(x(,,fr))
< e 2)||DU||L2(mB(xo,fr))

<cr” Z I fillL2(@nB(xo,20)) + 77 ||u||L2(QnB 3:0,27")))
=0

C(Z I fill e (@ B(wos2r)) + 7 Il Lr(@nB(wo,20)))
1=0

where ¢ depends on n, ||a;; ||, p, © and it may change from a line to the other.
Summing up we find

[0ullw.r Q) < K2(Z HfiHLP(QﬂB(mO,ﬁT)) + 7“_1||UHLP(QﬂB(zo,2T)))'
=0
Since fu = u on Q N B(xg,r) we get the statement for every p € [2,2n/(n — 2)] when

n > 2 and for all p > 2 if n < 2. Repeating the same procedure, starting from p = —"2
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we can prove the statement for every p € [2,2n/(n — 4)] if n > 4, for every p if n < 4.
Thus, after [n/2] steps, the proof is complete. O

The following estimate is proved by using a modification of Stewart’s technique. It
will be useful in order to obtain the estimate of the gradient of the solution of (2.111) in
LY(Q).

Theorem 2.4.5. Let p > n, f € Wi "°(Q) N W "P(Q); then, there exists woo > wp
such that for each A € C with Re A > wo, the solution w € D(E,) of A\u— Au = f belongs
to WP and satisfies

‘)‘|1/2HU||L°°(Q) < K3||fHW*—1,oo(Q)7 (2.98)
where K3 is a constant independent of \,u and f.

PROOF. Let zp € Q and r < 1. Let 6 be a cut-off function as the one considered
in proof of Lemma 2.4.4: § € C*(R"), 6(x) = 1 on B(xg,r) 0(x) = 0 outside B(z, 2r)
and with |[D%0|| () < er~1ol for each |a| < 2. As f belongs to W °(Q), it admits
a distributional representation f = fo — > | D;f;, where f; € L>(Q) for each i =

0,1,...,n and 37" || fillLe(@) = || fllw-1.(0). Note that u € WHP(Q) for p > n by
Theorem 2.4.2, therefore fu € W1P() and solves

A=A)Ou) =g (2.99)

where ¢ is defined in (2.94). By (2.97), (2.72) and (2.92), we get

n
gl 100y < Ka {||u|W1,pmm,2,.> +r Ml Lo a0 + D ||fi||mm,2,,,>}

1=0
< K; {Z I fill o (2, a0y + 7‘_1||U||Lp(szm,4r>}
=0
< Kgr/? {Z [ fill L) + 7’1||U||L°°(Q)} : (2.100)
1=0

where Ky, K5 and Kg are constants independent of r, A, f and u. Since
Wl’p(Qmo,Qr) - Co(ﬁzo,%) = LP(Qyg,2r)

for p > n and the first injection is compact, then for each ¢ > 0 we get

||0u||L0°(Qz0,2r) S E:Tlin/p||0uHW1’p(Qwo,2r) + C(E;)T’in/pHHUHL:”(QmO,zr)’ (2101)
where ¢(¢) is independent of r, A\, v and f (see Lemma 5.1 of [30]).
Moreover, (2.73) and the Holder inequality imply
HGUHWII"”(QZO,T) < chl_”/p||9u||Lp(Qwo,r) < cor|ful| Lo ()- (2.102)

Therefore, from (2.101) and (2.102) we get

T*QHGUHW;LOC(Q) + r71|\0u\|Loc(Q) < 5r*"/p|\0u\|wl,y(g) + 8(6)7"717"/”||9u||m(g).
(2.103)
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On the other hand, from (2.87)
IMGullyy -0 gy + I 2100l Lo @) + 10ullwioi) < Kallgly-10 - (2.104)
Therefore, by (2.103), (2.104) and (2.100) we deduce
P2 Gullyy 1,00 () + 70U e 0

n
< K1 Kg(e +c(e)r  ATY2) (e ull o) + D Ifill L)) -
1=0

Set K7 = 4K, Kg and choose woe > wp and € = K1, 7 = Koe(K; M)\ ~Y2 = Kg|\|~Y/2.
Then, if xy is a maximum point for the function |u| we obtain

_ 1
Ky 2|)‘|||9u||w*—1v°°(9) + §K8 A2

1 n
ull=(o) < 5 D il @) < 1F 1l -1y
=0

(2.105)
Thus (2.98) is proved. O

2.5 Generation of analytic semigroups in L!(Q)

In this section we prove that the realization of uniformly elliptic operators with suit-
able oblique boundary conditions is sectorial in L!(2) where  is assumed to satisfy
(2.2). We consider the operator A in divergence form with real-valued coefficients

:zn:Di(ai] +Zb )D; + c(x)

ij=1

= div(A(z)D) + B(z) - D + c(x). (2.106)

We suppose that A is uniformly p-elliptic, i.e.,

n

pER < Z ai;(2)6é; < pléff, zeQ¢eR” (2.107)

i,5=1

and that
Q5 = Qji, Qg b; € WQ’OO(Q), (S LOO(Q) (2108)

Actually the regularity assumption on the coefficients b; will be weakened later. Define

My = IT;?;X{H%‘HWZMQM [[billw2. (), lell Lo o) }- (2.109)
We consider the following first order differential operator acting on the boundary

B(x,D) = (AD,v) Za” (2.110)
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Since we would like to solve the problem in L' by duality from L>, we point out that
the choice of the coefficients and the assumptions of regularity (2.108) guarantee that
hypotheses in Section 2.1 hold also for (A*, B*); this fact allows us to apply the results
of Section 2.3 to the realization of A* with homogeneous boundary conditions given by
B* in L*°(Q).

In order to deduce a result of generation in L'(£2) we argue as follows. Set

Da={uec L) NC*Q); Au € L'(Q),Bu =0 in 00Q}.

Lemma 2.5.1. A: Dy C LY(Q) — LY() is closable in L' ().

PROOF. Let (u;) be a sequence in D4 such that u; — 0 and Au; — v in L'().
Then, integrating by parts,

/apudx = lim [ pAu;dx = lim /ujA*godx =0
Q i—oo Jo i—oe Jo

for every ¢ € C2°(€2). Hence v = 0, which implies the assertion. O

By Lemma 2.5.1 we can define the realization of A in L! with boundary condition B3,
(that will be denoted for simplicity by (A1, D(A1)) to be the closure of Ajp, in L'(Q),
that is, the smallest closed extension of A|p, in L'(Q2). Then D(A;) is the closure of D 4
with respect to the graph norm in L'. Now we are in a position to prove the following
result.

Theorem 2.5.2. There exist C' > 0 and wy € R, depending on n,u, My and §2, such
that for Re A > wy the problem

Au—Au=f in
{ Bu=0 in 90 (2.111)
with f € LY(Q) has a unique solution u € L*(Q) and
AMllullzr @) < CllfllLr@)- (2.112)

PROOF. First of all we prove that the range of (A— A7) contains the space of functions
L2 (Q) = {¢ € L*>°(Q); supp ) CC Q} which is dense in L!(12).
Indeed, let 7 € C?(Q) be such that

Yoijer [Digm| + 370, [Dim|? < e
e ™ e LY(Q)
<AD7T, V> =0 in 90

Moreover, if Q is unbounded, we also require that lim ;|0 zeq m(2) = +o00. Such a 7
exists. For instance, when Q = R" one can choose w(z) = /1 + |z|2. In the general case
one can adapt the previous example modifying 7 near the boundary in a suitable way.
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We define II(z) = exp[n(z)]. Then, for every function i) € L°(Q), we get IIy) € LX(£2)
and

Au— Au =1 € LP(Q)

Bu=0 in 0

if and only if

{ Ay — Ay (TTu) = Ty € L2 (Q) (2.113)

B(Mlu) =0 in 09
where

n

./471— = ./4 -2 Z (lijDﬂTDj + ( Z (Di(aiijTr) — aijDiﬂ'Djﬂ') + szDm)
i i=1

ij=1 ij=1

As it is easily seen, the operator A, satisfies the assumptions (2.3)-(2.4); moreover, since
Al(z,€) = A%(z,€) then A, satisfies also the root and the complementing conditions.
Therefore, by applying Theorem 2.3.3 we get that there exists ITu € D((A,)Z) C L>(Q)
solution of (2.113).

Hence u € {v € CYH(Q)N LY (Q); Av € L*(Q)} and ¢ is therefore in the range of (A — Ay).
Now we prove (2.112). Let consider u solution of Au — Au = f € L'(Q) and let

A* =" Dj(ai;Di) = > biD; + (¢ — divb)
i,j=1 j=1

Then, from Theorem 2.3.3, it follows that (A*)Z" with oblique boundary conditions

B*(x,D) = (A(z)D,v(z)) — (B(z),v(x)) = 0 generates an analytic semigroup in L>(£2)
and so the elliptic problem

{ Aw — A*w = p € L=(Q) (2.114)

B*w =0 in 0Q

has a unique solution w € D((A*)E) for Re A sufficiently large. Moreover, taking Re A
sufficiently large we get

IMlwllzoe @) + A2 [ Dwll oo @) < Kllll Lo o)-

Now, we can apply the method used in Pazy (see [35]) to obtain
Julls o) = sup { [ ate)eta)dss ¢ € L2@), el <1}
< Sup{/u(x)()\ — AN wydx; w, € L(Q)solution of (2.114), [|¢[|z~ @) < 1}

< sup {/ww(/\ — A)udz; w, € L>(Q)solution of (2.114), [l¢]|r~ o) < 1}

in particular,
ullzr ) < KX fllL @)-
So, (A\— A1) is an injective operator with closed range in L(£2) and the proof is complete.
U

The following theorem establishes further properties of the resolvent operator.
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Theorem 2.5.3. Under the assumptions of Theorem 2.5.2, there exist wj > wy, K' >
K and 0] € (n/2,61) depending on n,u, My and Q such that for every A such that
larg (A — w})| < 64, the solution of (2.111) satisfies

|)‘|1/2HDUHL1(Q) <K'l fll (o) (2.115)

PROOF. Let ¢ = dive) with ¢ any function in L*°(Q2, R™). By the estimate (2.98) we
know that for A with Re A > wy, the solution of the following problem

A — A*v = divyp
{ B*v=0 on 09 (2.116)
satisfies
20l e (@) < Kalldiveblly 1. - (2.117)

‘We notice that
ives s = sup{{diver, @) : o € WHLQ), @llwrago) < 1} < [0llz.  (2118)

Now, if u is the solution of (2.111), we get

[1Dul[Lr ) = Sup{/Q<DU($)M/J($)>d$ PP e O (R, (9]l < 1}

—sup{ [ ) diviode: v e CHOR. [oilueioy <1
Q
< sup {/ u(z) divip(z)de - op € CZ(QR"), [|dive)[[yy—1.00 ) < 1}
Q
= sup {/ u (A — A") vy dz : vy solution of (2.116), ||diV’lz}||W*—1,oo(Q) < 1}
Q
= sup {/ [(A = A)u] vy dx : vy solution of (2.116), [|dive)|[y—1.00 ) < 1}
Q
< csup{Hf||L1(Q)HWHLN(Q) : v solution of (2.116), [[div)|lyy-1. g < 1}.
(2.119)
Now, taking into account (2.117), we get
IDullzi0y < K'INT2 £l 0)-
O

As a consequence of Theorem 2.5.2 we have that A; is sectorial, that is there exist
K € R and 6, € (7/2,7) such that

Y00 ={A € C; A # wy, larg (A —wi)| < 01} C p(Ay)

and

RN, Al 2z o)) < A=wi|

holds for each A € ¥¢, o, -






