
Introduction

Functions of bounded variation, usually denoted by BV , have had and have an impor-
tant role in several problems of calculus of variations. The main features that make BV
functions suitable for dealing with specific variational problems are their compactness
properties, in connection with integral functionals with linear growth on the gradient,
and their property of allowing for discontinuities along hypersurfaces, which is important
in several geometrical and physical problems. The prototype of integral functional with
linear growth on the gradient is the area functional, whereas, among variational problems
with discontinuities, maybe the first success of the theory has been the complete solution
of the isoperimetric problem in Rn, and more recently free discontinuity problems (a
term introduced by E. De Giorgi in [17]) have been studied. These problems come from
image segmentation and smoothing and fracture mechanics, motivated by biology and
physics, where digital image processing and the study of elasticity properties of materials
are of relevant importance. Notice that Sobolev functions do not either share compact-
ness properties as general as BV , or allow for (n−1)-dimensional discontinuity sets (like
boundaries).
BV functions have nowadays a satisfactory theory that regards their functional proper-
ties, including approximation, embedding theorems, smoothing, boundary trace theorems
and fine properties. For a systematic and self-contained treatment of the theory of func-
tions of bounded variation we consider as main reference the book of L. Ambrosio, N.
Fusco and D. Pallara [5]. Other references are the monographs of E. Giusti [23], U.
Massari and M. Miranda [32], L. C. Evans and R. F. Gariepy [20], and W. P. Ziemer
[49].
Given Ω an open subset of Rn, functions with bounded variation in Ω are defined as
those L1(Ω) functions whose distributional derivative is representable by a finite Rn-
valued Radon measure, denoted by Du, whose total variation defined as

|Df |(Ω) = sup
{∫

Rn

fdiv φ dx : φ ∈ C1
c (Ω,R

n), ‖φ‖L∞(Ω) ≤ 1
}

(1)

is finite. A particular case of interest is when f = χE , the characteristic function of
E ⊂ Rn. In this case, we set P(E,Ω) = |DχE |(Ω), and E is said to be a set of finite
perimeter in Ω if P(E,Ω) <∞.
The theory of BV functions is closely related to that of sets with finite perimeter. The
link is established by the coarea formula, that relates the variation measure of u and the
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perimeter of its level sets:

|Du|(Ω) =
∫
R

P(Et,Ω)dt, (2)

where Et = {x ∈ Ω : u(x) > t}.
One of the starting points of this thesis is the paper [15], where De Giorgi defines for
the first time the perimeter of a set. At that time, it was more or less clear (see also
[10]) that a class of sets enjoying good geometric and variational properties would come
from an approximation procedure. De Giorgi’s idea was to start from a convolution with
real analytic kernels. With the aim of extending the isoperimetric inequality and the
Gauss-Green formula, for a given function f ∈ L∞(Rn), he defines the approximating
functions as

W (t)f(x) = (4πt)−n/2
∫
Rn

e−
|x−y|2

4t f(y) dy.

This choice of convolution kernel Gt(x) = (4πt)−n/2e−
|x|2
4t has an advantage with respect

to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law:

W (t+ s)f(x) = W (t)W (s)f(x) t, s > 0.

In fact, the function u(t, x) = W (t)f(x) is the solution of the parabolic problem{
∂tw(t, x) = ∆w(t, x) t ∈ (0,∞), x ∈ Rn

w(0, x) = f(x) x ∈ Rn . (3)

The heat semigroup (W (t))t≥0 is contractive on L1(Rn) and commutes with the spatial
derivatives, so that

‖DW (t+s)f‖L1(Rn) =‖DW (t)W (s)f‖L1(Rn) =‖W (t)DW (s)f‖L1(Rn) ≤‖DW (s)f‖L1(Rn)

hence the function
t 7→

∫
Rn

|DW (t)f | dx

is non increasing and the existence of the limit as t→ 0 is guaranteed.
In particular, given E ⊂ Rn, De Giorgi defines the perimeter of E through the limit

P (E) := lim
t→0

∫
Rn

|DW (t)χE | dx. (4)

Now, since definition (4) makes sense also for functions in L1(Rn), one could compute
the limit in the right hand side of (4) (with a generic f ∈ L1(Rn) in place of χE) and
prove that

|Df |(Rn) = lim
t→0

∫
Rn

|DW (t)f | dx, (5)

i.e. that the limit in (5) coincides with the supremum in (1) for every f ∈ L1(Rn).
The aim of this thesis is to investigate if the same result is true if |Df | in (1) is replaced
by a more general weighted variation of f , and the heat semigroup (W (t))t≥0 in (5) is
replaced by the semigroup generated by a general elliptic operator of second order in an
open set Ω ⊂ Rn, with suitable boundary conditions.
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Let us briefly describe the problem considered.
Let Ω be a (possibly unbounded) domain in Rn with uniformly C2 boundary and let A
be a uniformly elliptic second order operator in divergence form:

A(x,D) =
n∑

i,j=1

Di(aij(x)Dj) +
n∑
i=1

bi(x)Di + c(x). (6)

If Ω 6= Rn we consider the (conormal) operator B acting on the boundary ∂Ω

B(x,D) =
n∑

i,j=1

aij(x)νi(x)Dj = 〈AD, ν〉, (7)

where ν is the outward unit normal to ∂Ω and A = (aij). We consider the following
problem 

∂tw −Aw = 0 in (0,∞)× Ω
w(0) = u0 in Ω
Bw = 0 in (0,∞)× ∂Ω.

, (8)

with initial datum u0 ∈ L1(Ω). Let us briefly comment on the homogeneous boundary
condition 〈ADw, ν〉 = 0. In the simplest case when A = ∆ and u0 = χE in (8), the
natural boundary condition to obtain P(E,Ω) as the limit as t → 0 is the Neumann
condition ∂w

∂ν = 0, because in this way the function u0 is not immediately modified near
the boundary, and then for short times the contribution of the gradient of the solution
is significant only in the interior of Ω, thus measuring only the relative boundary of E.
The natural extension of ∂w

∂ν = 0 in (0,∞)× ∂Ω when we consider a generic operator A
is 〈ADw, ν〉 = 0 in (0,∞)× ∂Ω.
In order to study our problem, it has proved to be convenient to translate it in the
language of semigroups, and exploit the relative techniques. This leads us to consider
the realization A1 : D(A1) ⊂ L1(Ω) → L1(Ω) of A in L1(Ω), where the domain D(A1)
takes into account the boundary conditions. We shall prove that (A1, D(A1)) is sectorial
in L1(Ω), hence it is the generator of an analytic semigroup (T (t))t≥0.
In order to prove that a linear operator A : D(A) ⊂ X → X is sectorial it is needed to
prove first of all that the resolvent set ρ(A) contains a sector

Σθ = {λ ∈ C : λ 6= ω, |arg (λ− ω)| < θ},

with ω ∈ R and θ > π
2 ; then, that there is M > 0 such that the resolvent operator of A,

R(λ,A) = (λ−A)−1 verifies

‖R(λ,A)‖ ≤M/|λ− ω| for λ ∈ Σθ. (9)

For the first requirement one has to prove existence and uniqueness of the solution of
elliptic boundary value problems in L1(Ω).
Basically, two ways are known to show the sectoriality of (A1, D(A1)). One is based on
the integral representation

(T (t)f)(x) :=
∫

Ω

p(t, x, y)f(y) dy, (10)
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and consists in proving the existence of the kernel p, and subsequently in deriving suitable
estimates on p and its derivative. Relying on earlier ideas of R. Beals and L. Hörmander,
this point of view is deeply pursued by H. Tanabe in his book [45].
The other way is based on a duality argument. There is a serious obstruction in extending
to L1(Ω) the Lp-theory (1 < p < ∞), because the classical Calderón-Zygmund and
Agmon-Douglis-Nirenberg estimates are known to fail for p = 1,∞. A way to circumvent
this difficulty for p = ∞ has been devised by K. Masuda and H. B. Stewart (see [42], [43]
and also [31]) and consists in a clever passage to the limit as p→∞ in the Lp estimates.
Then, a duality argument can be used to pass from L∞ estimates to L1 estimates and the
sectoriality in L1(Ω). This has been done in the case Ω bounded and Dirichlet boundary
conditions by G. Di Blasio [18], H. Amann [4], A. Pazy [35], and D. Guidetti [24] for the
case of elliptic systems in L1. In the same vein, we have proved sectoriality of (A1, D(A1))
in L1(Ω) for Ω (possibly) unbounded and homogeneous co-normal boundary conditions.
After proving the existence and analyticity of the semigroup (T (t))t≥0, we need precise
estimates on the first and second order derivatives, in order to prove that the limit in (5)
exists, and to evaluate it.

Let us come to our standing hypotheses.
We suppose that the operator A has real valued coefficients satisfying the following
assumptions

aij = aji ∈W 2,∞(Ω) and bi, c ∈ L∞(Ω).

and that the uniform ellipticity condition holds, namely there exists a positive constant
µ ≥ 1 such that for any x ∈ Ω and ξ ∈ Rn

µ−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2.

With these assumptions on the coefficients it turns out that (A1, D(A1)), where D(A1)
is the closure in the graph norm ‖ · ‖L1(Ω) + ‖A · ‖L1(Ω) of the space

{u ∈ L1(Ω) ∩ C2(Ω̄); Au ∈ L1(Ω),Bu = 0 in ∂Ω},

is a sectorial operator so it generates a bounded analytic semigroup T (t) in L1, and
T (t)u0 is the solution of

∂tw(t, x) = Aw(t, x) t ∈ (0,∞), x ∈ Ω
w(0, x) = u0(x) x ∈ Ω
Bw(t, x) = 0 t ∈ (0,∞), x ∈ ∂Ω

(11)

By the density of D(A1) in L1 and the fact that D(A1) ↪→ W 1,1(Ω) (see Remark 3.0.6)
we can also deduce that T (t) is strongly continuous in D(A1) with respect to the W 1,1

norm, and that
lim
t→0

‖T (t)u0 − u0‖W 1,1(Ω) = 0 (12)

for every u0 ∈ D(A1). Formula (12) implies the convergence of ‖DT (t)u0‖L1(Ω) to the
total variation of Du0 as t→ 0.
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But for general f ∈ L1(Ω) the existence of the limit in the right hand side of (5), with
T (t) in place of W (t), relies on precise estimates on the first and second order derivatives
of T (t)f . We prove that, for every t > 0, the inequalities

‖DT (t)u‖L1(Ω) ≤
C√
t
‖u‖L1(Ω)

‖D2T (t)u‖L1(Ω) ≤
C

t
‖u‖L1(Ω) (13)

hold for every u ∈ L1(Ω) and some constant C > 0 independent of u. Estimate (13) has
to be improved to go ahead, and the improvement is obtained via a characterization of
the interpolation space between the domain D(A1) and L1(Ω). As a consequence, we
prove that there exists δ ∈ (1/2, 1) such that

tδ‖D2T (t)u‖L1(Ω) ≤ C‖u‖W 1,1(Ω) t ∈ (0, 1) (14)

holds for every u ∈ D(A1) and for some constant C > 0. Estimate (14) will be very
useful to estimate the “defect of monotonicity” of the function

F (t) =
∫

Ω

|DT (t)u0| dx. (15)

Actually, we prove that for δ ∈ (1/2, 1) as in (14) the inequality∫
Ω

η|DT (t)v|A dx ≤
∫

Ω

η|Dv|A dx+ Ct1−δ‖v‖W 1,1(Ω) t ∈ (0, 1) (16)

holds for v ∈ D(A1) and for any nonnegative function η ∈ C1
b (Ω). In (16), |Dv|A

denotes the A-variation of Dv, namely the total variation weighted by the matrix of the
coefficients A = (aij)ij defined as follows

|Du|A(Ω) = sup
{∫

Ω

udivψdx : ψ ∈ C1
c (Ω,R

n), ‖A−1/2ψ‖∞ ≤ 1
}
.

Finally, using (16) and a result of approximation in variation for BV functions via func-
tions belonging to D(A1), we get that the total variation of u0 is the limit as t → 0 of
the L1 norm of the gradient of T (t)u0, that is the following equality

|Du0|(Ω) = lim
t→0

∫
Ω

|D(T (t)u0)| dx (17)

holds for every u0 ∈ L1(Ω). As a consequence we get that u0 ∈ BV (Ω) if and only if the
above limit is finite. Let us point out that the previous characterization holds not only
for classical BV functions, but also for weighted BV functions (see Theorem 4.3.4).
The proof of estimate (14) for the derivatives is a quite long tour. Following ideas
introduced by V. Vespri in [47] and [48] for Dirichlet boundary conditions, we study the
semigroup (T (t))t≥0 in Sobolev spaces of negative order and use a complex interpolation
result. We remark that in some intermediate steps (mainly, when we deal with the
adjoint operator of A) we need to assume higher regularity on the coefficients. However,
a perturbation result will allow us to come back to the initial assumptions.
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We study also another connection between the short-time behavior of the semigroup
(T (t))t≥0 in L1(Ω) and BV (Ω). In fact, this leads to a second characterization for BV
functions. In this part, we use the integral representation (10) of the semigroup and the
relative estimates quoted at the beginning of this Introduction.
More precisely we extend the results in [33], where the authors prove that a given function
u ∈ L1(Rn) is a function with bounded variation if and only if

lim inf
t→0

1√
t

∫
Rn×Rn

|u(x)− u(y)|Gt(x− y) dx dy <∞

and in that case its total variation can be written as

|Du|(Rn) = lim
t→0

π

2
√
t

∫
Rn×Rn

|u(x)− u(y)|Gt(x− y) dx dy. (18)

In order to extend (18) to functions with bounded variation in the domain Ω, we first
consider the special case of the characteristic functions and we characterize sets with
finite perimeter in Ω. We prove that if E ⊂ Rn is such that either E or Ec has finite
measure in Ω, then E has finite perimeter in Ω if and only if

lim inf
t→0

1√
t

∫
Ec∩Ω

T (t)χE(x)dx < +∞,

and in this case the following equality holds

lim
t→0

√
π

t

∫
Ω∩Ec

T (t)χEdx =
∫

Ω∩FE
|A1/2(x)νE(x)|dHn−1(x), (19)

where FE is the reduced boundary of E (see Definition 4.5). We remark that the
right hand side of (19) reduces to the classical perimeter when A = I, since P(E,Ω) =
Hn−1(FE ∩ Ω). Then, using (19) in connection with the coarea formula (2), we prove
that a given function u ∈ L1(Ω) is of bounded variation if and only if

lim inf
t→0

1√
t

∫
Ω

∫
Ω

p(t, x, y)|u(x)− u(y)| dydx <∞

and its A-variation can be written as follows

|Du|A(Ω) = lim
t→0

√
π

2
√
t

∫
Ω×Ω

p(t, x, y)|u(x)− u(y)| dydx. (20)

Here, p is the kernel in (10).
Important tools for this second characterization are also the results of geometric measure
theory concerning the structure of sets of finite perimeter and in particular their blow-up
properties. We remark that this characterization is also in the spirit of [8], [14] and [27],
where only kernels depending on |x− y| are considered.

The two characterization of BV functions in terms of the short-time behavior of
semigroups, described below, have been published in [6]. However we point out that the
proofs in [6] rely on the kernel estimates recalled in Theorem B.1.1, whereas here we
use such estimates only in Chapter 5. In fact, in this thesis the construction and the
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analysis of the semigroup (T (t))t≥0, as well as the characterization of BV in Chapter 4,
are independent of the kernel estimates and are rather based on the study of the resolvent
equation. In this respect, the estimates we get are self-contained, and, even though the
methods are based on previous works mainly confined to the Dirichlet problem, our
presentation as a whole is original.

Let us describe the contents of the thesis. We tried to be as self-contained as possible,
so we start in Chapter 1 by recalling some basic definitions and the most important
properties of semigroups and a few relevant notions of measure theory. Mainly following
[19] for the first part and [5] for the second one, we state (often without proof) some
classical theorems that will be used throughout the thesis and fix our notation. We
recall the main properties of sectorial operators and some perturbation results. Moreover
analytic semigroup and intermediate spaces are mentioned in the first part. The second
part consists in definitions and useful results of measure theory. Finally, Section 1.5
contains a collection of analytical tools helpful in the sequel.
Chapter 2 is devoted to results of generation of analytic semigroups in suitable Banach
spaces. Since we get generation in L1(Ω) from analogous results in L∞ by duality and
since the L∞ theory makes use of that in Lp, 1 < p < ∞, we start by recalling some
classical result of generation in Lp spaces. Then, following [42] and [43], we deduce
generation for elliptic operator with non tangential boundary conditions in the space
of essentially bounded functions. Thus, using the adjoint boundary value problems in
L∞, we get existence and the estimate (9) for the solution of the elliptic boundary value
problem associated with A and B in L1. We also study elliptic boundary value problems
in the dual space of some Sobolev spaces to deduce by duality estimates for the gradient
of the resolvent operator R(λ,A1).
In Chapter 3 we derive estimates for the L1 norm of the semigroup T (t) generated
by (A1, D(A1)). Other useful estimates are established for the first and the second
order spatial derivatives of T (t) also by mean of the characterization of some new real
interpolation spaces.
After a brief introduction on the possibly weighted BV functions and sets of weighted
finite perimeter we collect in Chapter 4 their main properties. In particular, a version
of the classical Anzellotti-Giaquinta approximation theorem is derived, and a weighted
version of the coarea formula is also shown. In the simplest case of the Laplacian defined
in a convex domain with homogeneous Neumann boundary condition on ∂Ω, the function
F in (15) can be easily proved to be non increasing by differentiating under the integral
sign. We remark that in such framework the convexity of the domain is essential: in fact
a counterexample to the monotonicity is provided in [22]. In general, when we consider a
generic operator like A, the same procedure does not work as well as in the previous case
as we do not get monotonicity. However estimate (16) and the approximation results
allow us to conclude, without convexity assumption on Ω. The first part of Chapter 5 is
devoted to collect known results concerning some connections between semigroups and
perimeter. In particular we refer to [27], where Ledoux connects the L2 norm of the heat
semigroup in Rn with the isoperimetric inequality, and to [33] for the characterization
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of the perimeter of a set E ⊂ Rn in terms of the behavior of∫
Rn\E

W (t)χE dx

as t→ 0. Then we extend this latter result and we provide a second characterization for
sets of finite perimeter and functions with bounded variation in Ω.
At the end of the thesis there are two appendices. The first one consists in an elementary
treatment of the real and complex interpolation theory. Moreover a new characterization
of a real interpolation space is given. More precisely, we prove that if θ ∈ (0, 1/2) the
real interpolation space

(L1(Ω),W 2,1(Ω) ∩W 1,1
A,ν(Ω))θ,1,

where W 1,1
A,ν(Ω) is the closure of {u ∈ C1(Ω) | 〈A(x) · Du, ν(x)〉 = 0 for x ∈ ∂Ω} with

respect to the topology ofW 1,1(Ω), consists of functions that are in the fractional Sobolev
space W 2θ,1(Ω). This fact will be used in Chapter 3 to characterize the intermediate
space DA1(θ, 1). Finally a brief recall on the complex interpolation spaces is provided in
Section A.3. We present this argument in a quite general context, which still is not the
most general possible, but is close to our applications.
In Appendix B we gather up some Gaussian upper and lower bounds for the integral
kernel p in (10), (20). For the Gaussian lower bounds we study first the symmetric case
then, the estimates are extended to the non-symmetric one. More details about this
matter can be found in [34].
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