
STRUGTURE. GONGRUENGES AND VARIETIES OF GOMPLETELY REGULAR SEMIGROUPS

NORMAN R. REILLY

l. LOGAL AND GLOBAL SIRUGTURE

One area af research in the field of Semigroup Theory in which there

have been significant Successes in recent years has been the subject of

completely regular semigroups. The aim of these lectures is to give a brief

review of some of the achievements in the theory of completely regular

semigroups. We wl11 start with some familiar aud we11 known results and

concepts.

An element a of a semigroup S 1s regular ii there exists an 'element

X 1n S such that a - axa and a semigroup S is regular if every

element cf S ,s regular.

If a, x ES, a semigroup, are such that a - axa and y - xax, then

a simple calculation wl11 verify that a - aya" and y - yay. Such an

element y 1s called an inverse of a.

An element a of a semigroup S 1s completely regular if there exists

an element x E S such that a - axa and ax - xa. In particular, x must

be an inverse of a.

LEMMA l.~. For any element a in a semigroup S, the following

statements are equivalent.

(i) a is complete1y regular.

(ii) a has an inverse with which it commutes.

(iii) H is a subgro~p .a

We say that a s~migroup S is comp1etely~ if every e1ement of

S i5 completely regular.

LEMMA 1.2. For any semigroup S the following statement5 are

equiva1ent.

(i) S is completely regular.

(ii) S ,s a union of (disjoint) groups.

(iii) Every H - class cf S is a group.
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of a in
-l

- a a, the

denote the inverse
-l

aa

of alI completely regular
-l

a

denote the element

NOIATION Let e~ denote the class

semlgroups and for any a E S E e3{, let

the (graup) H class H and let
O- a

a
identity of the graup H •a

lt is nat hard to see that the class e3{ 1s closed with respeet to

products and homomorphic images. However, the additive graup of integers is

completely regular but nas the infinite eyelie semigroup of positive

integers, which 1s nat completely regular, as a subsemigroup. Thus the class

e3{ 1s nat closed under subsemigroups. On the other hand, aoy subsemigroup of

a completely regular semigroup which 1s closed under inverses (a ~ a-l) is

a150 completely regular.

These observations suggest considering completely regular semigroups not

simply
-l

a ).

class

as semigroups but as semigroups endowed with a unary operation (a ~

This has now become the accepted v1ewpoint from which to study the

e~. ~en we do this the class e~ becomes a variety of algebras

endowed with a binary and a unary operation satisfying the following

identities:

x(yz) - (xy)z. -l
x - xx x,

-l -l
(x ) - x,

-l -l
xx - x x.

In this context, consistent with earlier notation, we shall write
-l -l

xx - x x.

o
x -

The manipulation of inverses ~n completely regular semigroups can

present quite a problem. One observation that is sometimes

helpful is the following.

L~~ 1.3. (Petrich and Reilly [19], Lemma 2.8) The variety e~

satisfies the identity

-l O -l O -l O
(xy) - (xy) y (yx) x (xy)·

Recall that a simple semigraup 1s one w1thout proper ideals. A

completely simple semigroup is ane which 1s both completely regular and

simple.

Let S be the disjoint union of the semigroups S ("'EY), where Y

'"is a semi lattice and s"'s~ I:; S",p. Ihen S is said to be a semilattice of

the sernig,roups S Q E Y, and we write S - (Y; S ). Ihe importance of
",' '"
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chis concepe in che eheory of complecely regular semigroups was revealed by

che following theorem.

IHEOREM 1. 4. (Clifford [ 2 J and [4 J, Theorem 4.6) Lec 5 be a

complecely regular semigroup. Then Il - 3 is a congruence, each '·class is

a complecely simple semigroup and 5/3 is a semilaeeice. Thus 5 is a

semilattice of its j-classes.

This theorem foeusses che actention on the class of eomplecely simple

semigroups, not jusc as an inceresting speeial class of completely regular
•

semigroups but as an essential component of the strueture of alI eompletely

regular semigroups. That the class of completely simple semigroups

is an inceresting elass is also attesCed to by ehe faee that ie can be

characterized in so many different ways, as illustrated in the next

theorem.

Ue adopt the notation E(S) for the set of idempocencs of a semigroup

5.

THEOREM 1.5. The following conrlicions on a semigroup S are

equivalent.

E(S) (e E E(5)

e - f).

is completely simple.

is completely satisfies
O O

regular and che identity (axb) - (ab) .

completely regular and satisfies che identity
O O

lS (axa) - a •

is completely regular and, for a11 a,b,x E S, ab K axb.

is completely regular and, for a11 a,x E S, a 1{ ax.

lS regular and, for alI a,b E S, aSb is a maximal subgroup of 5.

(i) 5

(ii) 5

(iii) 5

( iv) S

(v) S

(vi) S

(vii) S is regular and weakly cancellative (ehat is, ax - bx

xb implies thae a - b).

(viii) S 1s regular and a - axa implies thae X - xax.

(ix) S is regular snd every idempocent is primitive in

is primitive if f E E(S) and ef - fe - é implies thae

and xa -

(x) S is simple and E(S) contains a primitive elemento

It follows immediately from Theorem 1.5(i~) and (iii) ehae e~ is a

subvariety of e~.

For any 4-tuple (I,G,h;P) where G is a group, I and A are

non-empty sets and P: (l,i) ~ Pli LS a funetion from AxI to G, let
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~(I,G,A;P) - IxGXA together with the multiplication

(i,g,À)(j ,h,p) - (i,gp>jh,p).

It is a straightforward exereise to show that M(I,G,A;P) is a eompletely

simple 5emigroup. This construction i5 due to Rees and sueh semigroups are

therefore called Rees matrix semigroups. However, Rees matrix semigroups

are mueh more than examples of completely simple semigroups.

1HEOR~ 1.6. (Ree~ [31] aud [4], Theorem 3.5) Every eompletely simple

semigroup is isomorphie to a Rees matrix semigroup.

The Rees Theorem ~s tremendously important in the study of eompletely

regular semigroups in generaI and completely simple semigroups in

particular. Congruenees and homomorphisms can be effectively studied in

terms of the Rees matrix representations following from Theorem 1.6.

Indeed, the eonstruction of Rees matrix semigroups is so simple, it would

almost seem as if any problem concerning completely simple semigroups eould

be resolved Py the simple expedient of representing alI completely simple

semigroups as Rees matrix semigroups and then performing the appropriate

arithmetic. ~ile many problems are indeed amenable to such an approach it

is not universally true as we shall see later.

We can v~ew Clifford's Theorem as g~v~ng a global structure to any

completely regular semigroup while Rees's Theorem'provides a loeal

structure. However, much of the complexity in the study of completely

regular semigroups arises in going from the loeal to the global pieture.

This is perhaps best illustrated by the following generaI strueture theorem

for completely regular semigroups where the "simple" loeal components

interact by means of factors aud rnappings.

THEOREM 1.7.(Petrich, [ 17)) For every Q =Y a semilattice, let S ­
a

Al(I ,G ,A ;P ) be normalized at a E I M • For Q ~ f3, let
Cl Cl Cl a: a a

(l) < >: SQXlf3 --t I p '

(2) S --t Gp ' denoted by " --t "p'a

(3) [ , I:ApXSa
--t A

p

be functions such that, for a E S
a' b E Sp
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(i) ii and
" E

(ii) if i E I
a

and À E A ) then
a

a - «a,i>, a
a

[:\,a]).

On s - u S
cr.EY Cl'

define a multiplication by

(4) aob -

Suppose that

(iii) for 1 <op. i E I ,À E A I

1 1

«a,<b,i», a p[ ]<b b ,[[À,a],bl) - «aob,i>,(aob) ,[À,aob]).
ì "1 ) a ,1> ì I

Then S ~s a co~pletely regular semigroup whose multiplication restricted

\.Iith the given multiplication.to each S coin~ides
a

completely regular semigroup

Conversely, every

is isomorphic to one so constructed.

This resul t 1S remarkable for its complete generality. A special case

of particular importance ar~ses as follows.

Lec S - (Y; Sa) aud, for a11 a, p E Y with a > p, let

'" p: S --> Sp be a homomorphism sueh that
a, a

There are various nice characterizations

- l ,a

a > p >ì, ~cr.,P~P.ì - ~a,ì'

a E S bES R' we have ab·· alp .Qb~ R .a' then
Q}J a,al-' /J'o.p

semilattice of che semigroups Sa and WTite

any strong semilattice of completely simple

'"0,0

for

(l)

(2)

is a strongs

s - [Y;s ,'" R]' Clearly,a a,/-,
semigroup5 i5 completely regular.

If, ln addition, for any

'We say that.

of the semigroups that arise in this way. We require a few preliminary

concepts.

Recall that a normal band is a band ~hich ·satisfies the identity•
axyb - ayxb and that a semlgroup is-a normal crypto~roup if X lS a

far some e,f E E(S).

.
congruence on Sand S;X is a normal band.

For any completely regular semigroup S, let the relation < be

defined in S by: for atb E S

a <b ~ a - eb - bf t

Let S be a completely regular semigroup with completely simple

components S J a E Y.
a

If S is such that, for a, p E Y with a > p, and

any idempotent e in S
a

there exists a unique idempotent f in
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with e > f, then S is said to satisfy D-majoritation.

Let

e~ - the variety of eompletely simple sem~groups

~ - the variety of semilattiees.

Ve ean now provide a number of different eharaeterizations of normal

eryptogroups.

IHEOREH 1.8. For any semigroup S the following sta~ements are

equivalent.

(i) S ~s a normal eryptogroup.

(ii) S ~s eompletely regular and, for alI e E E(S), eSe is an inverse

semigroup.

(iii) S is eompletely regular and, for alI e E E(S), E(eSe) is a

semilattice.

un~que element

(Y;S) is a strong semilattice of the completely simple
a

S , a E Y.
a

(iv) S is completely regular and satisfies V·majorization.

(v) S - (Y;So) is eompletely regular with eompletely simple eomponents

and for allo, ft e Y with Q > ft and for alI a ES, there exists a
* * a

a e Sp with a <a.

(vi) S -

semigroups

S
a

(vii) S is regular and a subdireet product of completely simple semigroups

with, possibly, a zero adjoined.

(viii) S E e~ v ~.

2. CONGRUENCES

We begin our treatment of eongruenees with congruences on complet~ly

simple semigroups. ~ith the aid of the Rees Theorem, eongruenees on

completely simple semigroups can be described fairly completely. The

details of the following treatment ean be ~ound in Howie [lO].

Let S - M(I,G,A;P). A triple (~,N,~), where ~ is an equivalence

P
(~,N,~)

relation on I, ~ is an equivalence relation on A and N 1s a normal

subgroup of G, is said to be adrnissible if
-l -l

(i,j) E ~ or (À,~) E ~ -. p,.p .p .p,. E N.
A~ ~~ ~J AJ

For any admissible triple (~,N,~), define the relation on S

by



(i,a,À) P(:f,N,Y) (j ,b,~) - (i,j) E:f, (À,~) E ~ and
-l -1 -1

PçiaPÀxp~xb PçJ E N
for some (alI) x E I, rEA.

THEOR~~ 2.1. Far any admissible triple (~,N,~),

congruence on S - M(I,G,A;P) and alI congruenees on

p ~s a
(:f,N,~)

S are cf this formo

Given the stucture theorems of Clifford (Theorem 1.4), Rees (Theorem

1.6) Petrich (Theorem 1.7), it would be natura! to investigate the

properties of congruences on a completely regular semigroups by considering

their restrictions to the completely si~ple eomponents and how they can be

reconstituted from these eomponents. This approach has been succesfully

explored by Petrich (18). However, here I wish to explore an approach to

the study of eongruences which 1s less direct but which has provided a rich

harvest of insights into not only the behaviour of congruences but also the

lattice of varieties of completely regular semigroups.

DEFINITION Let p be a congruence an a completely regular sem~group

S, Then the kernel of p is

ker p - l a ES: a p aGI

and the trace af p is

tr P - P!E(S)'

The key observation aboue the kernel and trace of a congruence is that

in combination they complete1y de termine the congruence.

~ 2.2. (Pastijn and Petrich [14], Lemma 2.10) Let p bè a

congruence on a comp1ete1y regu1ar sem~group S. Then, far any elements

a,b E S,
o ° -la p b <=9 a trp band ab E kerp.

Proof. Let a,b E Sand a p b. Theh a O
p bO and ab-1 p bO.

° ° -l °Hence a trp band ab E ker p. Conversely, _suppose that a trp
-l

and ab E ker p. Then

b _ b(b-1b)b-1b

p b(a-1a)b-1b
-l -l

- ba (ab )b

p ba-1 (ab-1 )(ab-1 )b

_ b(a-1a)b-1a(b-1b)
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p

-
p

-

b(b-1b)b-1a(a-1a)

bb-1a
-l

aa a

a.

COROLLARY 2.3. (Feigenbaum [5], Theorem 4.1) Let À, p be congruences

on a completely regular semigroup S. Then

À - p ker À - ker p and er). - tr p.

This leads to natural questions concerning che nature af those subsets

·of a completely regular semigroup which are kernels for congruences and

those equivalence relations on che set af idempotents which are che traces

of congruences. The Creatment presented here is essentially that of Pastijn

and Petrich [14), specialized to completely regular semigroups as 10 (Petrich

and Rei11y [24).

DEFINIT!ON A subset K of a completely regular sernlgroup S is said

to be a normai subset of S if it satisfies the following condit~ons:

(K1) E( S) ~ K,

(K2) k E K
-l.. k E K,

(K3) xy E K .. yx E K, (x,y E S) ,

(K4)
O

(x,y S) .X,x Y E K .. xy E K E

Far any subset K cf a semigroup 5, we denote by ~K the largest

congruence on S for which K is a union of ~KMclasses, Then

a ~K b - [xay E K ~ xby E K
l

(x,yES)]

*If 1 is a relation on a sem~group S, then we denote by 1 the

congruence on S

then we denote by

generated by 1.
O1 the largest

and if 1 is an equivalence relation

congruence on S contained in l'

THEOREM 2.4. (Pastijn and Petrich [14}. Lemmas 2.4, 2.9 and Petrich and

Reilly [24}) Let K be a subset of a completely regular semigroup S. Then the

following statements are equivalent.

(l)

(2)

(3)

K lS a normal subset of S .

K is the kernel of some congruence on S.

K is the kernel of ~K'
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,'ben (l) - (3) hold, o *((k,k):kEK) 1S the sm~llest congruence and

~K is the largest congruence on S with kernel K.

Next we consider che relations on che set of idempotents that arise from

congruences.

DEFINITION Let 5 be a completely regular semigroup and r be an

equivalence relation an E(S). Then l' is a normal eguivalence if" ie

satisfies the following

e , f

condition:
O

.. (xey)
O,.. (xfy) l

(x, Y ES).

TH,EOREM 2 . 5 . (Pastijn and Petrich [14], Lemma 1.3 and Petrich and

ReiIIy [24]> Let S be a completely regular semigroup and T be an equivalence

relation on E(S). Then the following conditions are equivalent.

(l) , is a normal equivalence.

(2) , "s the trace of some congruence on S.
*(3) ,. - tr ,

•

When (1) .- (3) hold, chen .,.* is che smallest congruence and (ì!rll)°
lS the largest congruence on S with trace ~.

Having successfu11y characterized those subsets of S that can be

kerne1s and those equiva1ences on E(S) that can be traces, it i5 natural

to consider when a norma1 subset and a norma1 equivalence can be combined to

be the kernel and trace of a sing1e congruence .
•

~ xfy E K, for al1
O O

(xk y) , for x,y E

[xey E K
O

(xky) ,--
e , f

k E K

(GPl)

(GP2)

DEFINITION Let S be a complete1y regu1ar semigroup, K be a normal

subset of S and ~ be a normal equivalence relation on E(5). Then

(K,~) ~s a congruence pair for S if K i5 a normal subset, ~ 1s a

normal equivalence and the following conditions are satisfied:

From the definition of
,

it follows ehat (CPl) could be replaced by

e f" f o=> e 'If
K

f, (equivalencly, ~ !:

invoking (K3) we could replace (CPI) by

e 1" f -=} [ex E K ~ fx E K).

alternatively,

**(GPl)

equivalent condition
*(GPl)

the

or,
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In che same

*(CP2)

sp~r~t, (CP2) can
O

K 'l: ker (J<rJ<) •

be replaced by che equivalent condition

Far auy congruence pair (K,r) for S, de fine che relation P(K,r)

on S by

a P(K,r) b - a
o < bO -l, ,ab E K (a,b ES).

THEOREM 2.6. (Pastijn and Petrich [14], Theorem 2.13 aud Petrich nnd

ReiIIy [24]) Let S be a complecely regular semigroup, K be a normal subset

of Sand T be a norma l equivalence relation on E(S). Then che following

statements are equivalent.

(K, r) is a congruence pair far S.

~K n (HrH)° has kernel K and trace r.

There exists a congruence p on S wich kernel K and trace r .

(l)

(2)

(3)

(4) There is a unique congruence p on S wieh kernel K aud trace T.

Whenever (l) - (4) hold, che unlque congruence on S wich kernel K

and trace T is

P(K,r) - . °(HrH) .

3. KERNEL AND TRACE RElATlONS

(.l,p E e(S».

(.l,p E e(S»

~ ker À - ker p

~ tr À - tr p

trace relation

.I K p

.I T p

Clearly K and T are both equivalence relations. As ~ immediate

consequence of Corollary 2.2, we have

Throughout this section, lec S denate a completely regular semigroup

and e(S) its lattice of congruences. Let the kernel relation K and the

T be defined on e(S) as follows.

~ 3.1. K n T - l, the identical relation.

We consider K first. As a related characterization of the kernel

relation we have the following interesting obvservation.

LEMMA 3.2. (Pastijn

.I K p

and Petrich [14], Lemma 3.9) Let

~ À n R - p n R .

.l,p E e(S). Then
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Proof. First suppose t'bat ker À - ker p. Then

a À (\ ~ b <= a ~ b, a À b

a ~ b, ab-l À bO (since
O _ bO)<= a

a ~ b, -l ker ker<= ab E À - p

<= • • • • •... a pri< b .

Thus À n K - p (\ ~. Conversely, let À (\ ~ - p n K. Then

a E ker À a À i<
O

-> (\ a

~
O.... • p (\ a

.... a E ker p

so that ker À , ker p and, by symmetry, equality follows.

NOT.....TION Let X(S) denote the set of normai subsets of S 0rde:te·j "1

set theoretic inclusion.

For any family (K. : i E Il of norma l subsets of S, it io5 clear that
~

iQrKi is again a normal subset of S. From this it f0110.....,s that X(S) .is

a complete lattice with respect to the operations

K
l

A K2 - K
l

(\ K2 and K
l

V K2 - (\(K E Y.(S): Kl u K2 C K} .

and Petrich [14], Lemma 2.9 and Petrich and

n . homomorphisrn ofis a complete

THEORL~

Reilly [24 j)

p

which induces the

E e(S»)(p

X (S)

K • ciass ofthe

- .ker p

onto

K
p

e(S)

P E e(S)

and

ker p)

3.3. (Pastijn

The mapping

ker: p

K on e(S). For al1
K

[PK,p) where

*PK-(P(\~)

intervai

reiation

Unfortunately, K is not aIways a congruence. Let G be any

non- trivial group, Y - (O, l) be the two element semi lattice and S - G x -Y.

Let € denote the identical relation, w tne universal relation, o the

minimum group congruence and p the Rees congruence determined by the ideaI

G x (O l. Then € K o but

€ .y p - p and a V P - w

where p and w do not have the same kernels.

However, there are circumstances under which K i5 a congruence.

Th~ method of proof used by Pa5tijn to establish the fact (Yneorem 4.4 below)

65



that K is a eongruence on the lattice of fully invariant eongruences on the

free complete1y regu~ar semigroup suggests the fo11owing discussion. We

begin with completely simple semigroups. Let (:1',N,~), (:1" ,N' ,-;l') and

(T,M,Q) be admissible triples for S - M(I,G,A;P) and 1et

andP -P p'
(:f,N,:!)'

A straightforward
- p(:f' ,N' ,-;l')
ca1culation wi11 show

a - "(T,M,Q)'
that

ker p - ((i,a,).): ap)'i E N)

with simi1ar expressions for ker p' and ker~. Consequent1y,

ker p - ker p' ~ N - N' .

Now it 1s al so the case that

so that

p v (J - P(>'vT,MN,:!vQ)

ker p v a - {(i,a,).): ap)'i E MN}

with a similar expression far ker p' v a. Therefore, it i5 e1ear that

ker p - ker p' - ker p v o - ker p' v o

whence K '5 a congruence on e(S) and the mapping ker '5 a homomorphism

on e(S) far any completely simple semigroup S.

This observation has consequences for any comp1ete1y regular semigroup.

To see this, let S - a~ySa be a comp1ete1y regu1ar semigroup with

completely simp1e components Sand 1et p, p', (J E (Il], the sub1attice
a

of e(S) consisting of those congruences contained in Il, be such that ker p

- ker p'. Let

where the un~on runs aver compositions

Pa - P 1S ' p' ,- P 1Sa
a a

Then ker Pa - ker p' . Also
a

p v o - U poaopo .•. op

and o
a - (a E Y).

of arbitrary length

-
-
-

U Uyp oa 0. "opaE a a a
U up oa o ... 0fJ

aEY a a a
Uy p V(]" .

aE a a

since P,O E (VI

Hence

and

(p v o)
a - p V

a
o

a

ker p V (]" - U ker(p V o)
a

- U ker (P
a

V o )
a

- U (ker p v ker o ) slnce ker 15 a homomorphism when
a a

applied to che lattice of congruences on a

completely simple semigroup



-
-

u (ker p'Ykera)
a a

- ker p' Va.

Thus we have established che following theorem:

THEOREM 3.4. Far any completely regular semigroup, the mapp~~g ker is

a homomorphism on (VJ.

Parallelling Lemma 3.1, we have che following result characterizing

che trace relation.

~ 3.5. (Pa5tijn and Petrich [14]. Lemma 6.5) Let A,p E e(S).

Then

A T p À v]i - p v K.

Combining Lemmas 3.1 and 3.5, we obtain a rather curious test for che

equality of congruences.

LEMMA 3.6. Let À,p E e(S). Then

A - p ),nK-pnH and >. v X - P v X.

In dealing with expressions of the forro p v K, ie ~s sometimes useful

to know the following simpler descriptions.

kEMMA 3.7. For any p E e(S),

p v K - pKp - Xp'J<.

~ Let ~(S) denote the set of alI normai equivalence relations

on E(S).

Clearly che interseetion of any family of norma! equivalences is again

a normal equivalence. From this it follows that the set ~(S) is a

complete lattice wich respeet to che operations

0/1." - un.,- and UV" - n (pe,"(S): uU"~pl.

THEQREM 3.8. (Pastijn and Petrich [14 ). Theorem 4.20) The mapp1.ng

tr: p l tr p (p E e(s»

i5 a complete homomorphism of e(S) onto ~(S) inducing the relation T

on e(S) . Moreover, for each pEe(S), the T-class of p i5 an
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interval

-
'W'here

*(tr p) and T
p - o

(p v H) .

In contrast to the fact that K need not always be a congruence OD

e(s), we have the following immediate consequence of Tneorem 3.8.

COROLTARY 3.9. T is a complete congr-uence OD e(S).

From Theorems 3.3 and 3.8, we see that the equivalence relations K

and T are such that every class is an interval in the lattice e(S). These

facts, together with Lemma 3.1 enable us to give a purely lattice theoretic

preof of the next observation.

PROPOSITION 3.10. (Pastijn and Petrich [14], Theorem 3.5) Let p e e(S).

Then

Proof. 'We have
- p - K T

p A P •

PK 5 PK v PT < p

and, by the convexity of the class pK, it follows tha~

Similarly, PK v PT T P which, by Lemma 3.1, implies

The second equality in the statement of the proposition

P
K

V P
T

K p.

that PK V PT - p.

follows by duality.

There are two additional relations on e(S) that are clos~ly related

to T. In order to recognize that these relations are natural relatives of

K and T, it is helpful to èonsider slightly different characterizations

of K and T.

Let p E e(S). Then

P H idempotent 'Dure if ker p - E(S),

p is idempotent separating if tr p - ( or,

equivalently, p ç X.

Clearly,

>. K p .... ker >. - ker p - ker >.np

= ker >./ (>.np) - E(S/(>.np) ) - ker p/(>.np)

= >./ ().np) and p/(>.np) are both idempotent pure.

Similarly l

>. T p = tr >. - tr p - tr >.np

= tr >./ (>.np) - , - tr p/(>.np)
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VP"p)

VP"p) ,

and p/P"p)

p/(),,,p) ç; x
are both idempotent separating

le is this very last characterization of T that leads to t'Wo

additional relations on e(s): for )"p E e (s) ,

), - ... ),/(),,,p) , p/(),,,p) ç; [
'2 p

), T o ... V(),,,p) , p/(),,,p) ç; 3\.
r

l'e refer to T2 as the left trace relation and to T as the righe traee
r

relation on e (s) .

Far any congruence p E e(S), Che ~ trace and righe trace af p

are defined to be

ltr p _ (p V [)o and °rCT p - Cp v~) .

Then an equivalent characterization of che relations T
1

by che following: for À,p E e(S),

and T
r

1s given

À T1 P ~ ler À - lcr p and À Tr p ~ rer À - rCT p.

The parallelism between che relations

strongly in che nexC result.

T T, 2 and T
r

~s brought aut.

THEORS~ 3.11. (Pastijn and Petrich [14J, Lemma

p --» p v X, p --4)pvt, p --» p

6.5)

v 3\

The mappings

are complete homomorphisms of che lattice e(S) into che lattice e(S) of

equivalence relations on S inducing che relations T, Ti and T• r'
respectively. Consequently, the relations T Ti and T are complete- , r
congruences on e(S).

As an immediate consequence, to match Lemma 3.5, ve have

COROLL...."'y 3. 12 . (i)

( ii) -
), v [

), v 3\

-
-

p V l.

p V '1:.

complete congruences, it follows that a11 the

are intervals. For any p E e(S), wc de fine

Since T and T are
1 r

T.2~classes and T -classes

Ti
r T

and
r

byPT ' PT .' p p, r• T

(PT
-i

pT
i - ,p )

1

setting

and pT - (P'T' 'r •
r
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The next resu1t sets out some imporcant basic connections between che

re1ations T, Tl and T .
r

~ 3.13. (Pastijn and Petrich [14J, Coro11ary 4.8 and Theorem 4.14)

(i) Ti n Tr - T.

(ii) For any p E e(S) ,

- end
T

r
A p - T

p .

This leads to the fo11owing diagram from [14].

f'.T
r

T
p

K
p

In order to give more explicit descriptions of the endpoints of

and Tr-classes.

Define

T .
i

ie is convenient to introduce the following relations.

e ~l f ~ e - ef

and define che relation ~r dually.

(e.-r E E(S))

f,ROPOSUION 3.14. (Pastijn and Petrich (14). Theorem 4.12)

Let p E e(S).

(i) - end
T

r
p - o

(p v~) .
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(ii) - (p n *< )
r

and - °(p v X) •

4. THE LATTICE QI VARIETIES

we shali require some nocation. Far any subvariety V of CP., ve

shali write

X (V)'O_ rhe lattice af subvarieties of V

FV- rhe relatively free completely regular semigroup in V

on a countably infinite set X

r - the lattice of fully invariant congruences on Fe3! .

Fundamental to che discussion of varieties 1s che standard

correspondence between varieties and fully invariant congruences.

Far V E !(e~), let Pv be def1ned on Fe~ by

Pi - {(U,v) E Fe~xFe~: u8 - v6, for alI homomorphisms e:Fe~ ~ S E V}.

Then Che mapping

11': V ~

1s an antiisomorphism of

(V E X (1:31) )

onta r.
The study of t(e~) involves many special varieties as reference

points.

trivial semigroups

left zero semigroups

righe zero semigroups

rectangular bands

rectangular groups

semilattices

bands

normal bands

groups

abelian groups

abelian groups of exponent n

left groups

righe groups

semilattices of groups

completely simple semigroups

orthogroups

eryptogroups
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[x - yJ

[xy - xJ

[xy - y]

[xyz - xz]

°°° °[x y z - (xz) J
2Ix - x, xy - yxJ

[x
2

- x]

Ix2
- x, axya - ayxa]

[xC - }]
[xC _ yO, xy _ yx)

[xC ° n 0J- y , xy - yx, x - x
[xOyO - xOJ

[xOyO _ yO]

°° C °[x y - y x )

° °[(xyz) - (xz) )

[ °° (0 0)0)x y - x y

°°° °[(x y) - (xy) J



00 000 000 O
Ix y - (x y ) , (x y) - (>;y) Jorthocryptogroupscq;

.,t1' r.ormal erypt.ogrotlps (completely regular semigroups far which

K 1s a congruenee and S/H 1S a normal band).

~ . locally ort.hodox eryptogroups (ehat. i5, alI S E eR such

that. eSe E~ for a11 e e E(S».

CLOeç . completely regular semigroups for ~hich che core (ehat 15,

che subsemigroup generated by che idempotents) 1ies in ~

Tbe first pare of !(e~) t.o be st.udied in aoy dept.h 'Was che lattice

t(S) of subvarieties of che variety S of bands. Here is che familiar

diagram for f~,SJ due to Birjukov [1] I Fennemore {6] and Gerhard [8j:

II

The nexc pare of che lattice X(e~) to be studied in dapth (excluding

che lattice of varieties of groups, which has been studied for many years,

of course) was che lat.t.ice t(e~) of subvariecies of che variety of

comp1etely simp1e semigroups. Most of the ~ork on !(e~) to dace has

caken advancage of che descripcion of che free completely simple semigroup

described by Clifford and Rasin (independently), in 1979.
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IHEOREM 4.1.(Clifford [3] Theorem 7.4, Rasin [28] Theorem 1) Let X

X E

G be the

G, for alI

entry equal

be a set.'

identity of
th(x,y)

x8 - (x,x,x), for alIwhere

Let Y - (p :x,y E X\(z))x,y
X different from z and lec

Let p - p - l, thez,x x,z
be che X X X matrix withp - (p )x,y

Fe~(X) - (M(X,G,X;P) ,8)

free group on

x E X, and let

to Px,y' Then

X.

be a non-empty set and fix z E X.

indexed by pairs of elements from

Z-XuY.

NOTATION Let e denote the set of endomorphisms w of G for which

there exist mapp~ngs Cf> and y, of X into ieself such that,· for alI

x,y E X,

-

Let N denote the set of norma1 subgroups of G which are invariant

under alI elements of e. le is easily verified that N is a sublattice

of the lattice of normal subgroups of G.

THEOREM 4.2. (Rasin {28], Theorem 3) The interval [lUl ,e~J is
•

anti-isomorphic to the lattice N.

Because of this result, most of the advances to date in the study of

t(e~) have involved the study of the structure of Gand N.

NOTATION Let

semigroups with the

in the centre of the

e denote the variety of alI completely simple

p~operty that tbe product of any two i~empotents 1ies

X-class containing ie. This variety is defined by

the identit"j
o O 0'0

ax a ya - aya x a.

For any V E t(e~), let '(V) denote the ~lass of alI idempotent

generated members of V and let <1(V» denote the variety of completely

simple semigroups generated by 1(V).

Tbe largest ideaI of t(e~) to bave been given a fairly precise

characterizaeion 1s t(e).

THEOREM 4.3. (Petrich and Reilly [20], Theorem 3.11) Tbe mapping

ç:' ) (. n lUl, Cf:!'> n •• , • n.) (' E !(e»

is an isomorphism of t(e) onta the subdirect produce
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Despite the "simple" character!zation of completely simp1e semigroups

provided by the Rees Theorem, the structure of l(ef) outsiàe of the ideaI

l(e), remains a mystery,

In order to probe deeper iuto the structure of l(e~), we tske

advantage of the recent techniques for investigating congruences that were

described in earlier sections,

In Theorem 3,10, we saw that the relations T, T
1

and T
r

are complete

congruences on e(S), for any completely regular semigroup S, but that K

need not be. We now have:

THEOREM 4.4.(Polak [25] Theorem l, Pastijn [12J Theorem Il) K is a

complete congruence on r,

Thus K, T,.

antiisomorphism

T ~ and T
L -l r
,.. these

are alI complete congruences on r. Under the

carry over to complete congruences on l(e~):

~ K V ~ P~ K PV' ~ T V ~ P~ T Pv
~ T1 V ~ P~ Ti Pv' ~ Tr y ** P~ Tr Py

The classes of any complete congruence are intervals and so it is

convenient to denote the intervals for these four congruences as follows:

VK

VT ­i

VT

VT
r

T
-[VT,V)

T
-[VT,V

r
]

r

T .
r

and

(V E !(~31»

congruences K, T1

V --7 V
T

r
inducing the

IHEOREP; 4.5. (Po1àk [25) Theorem l and [26) Theorem 1.6,' Pastijn [12]

Theorem 8) The mappings
K

V ~ V, V ~ V
T

i
are complete endomorphisms of l(e~)

Somewhat surprisingly, the mapping

V -; V
T

(V E !(~31»

is not an endomorphism of l(e~) (see Petrich and Reilly [22], Proposition

],6), In addition, the mappings associated with the other ends of the

intervals of K, T, T
1

aud T
r

are not endomorphisms, An interesting and
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useful face is that che upper

described in terms of Mal'cev

K
V - 3Ulo (Vv.:f) ,

An alternative expression for

ends of che intervals of K, T ~ aod T can be. • r
produccs (Pastijn (12] LemDa 3, rneorem 13):

T1 Tr
V - !,oV, V - ~oV.

vK is vK _ BoV.

and
À

a

L

and

(Petrich and

\.le define 8
1

taken from

1.S an interval.aÀ

The following discussion is

studying the circumstances under ....hich ao interval of the
•

bI in a lattice may be isomorphlc to the produce

b,b] w1th a vie.... to applying this to the lattice !(e1l).

a E L, the class
À

-[aÀ,a).

[23]) .

any

One approach used in che scudy of l(eR) has beeo to describe certaio

intervals of the form [~A V.~ V VJ. for suitable ~,V E l(e~), as

particular subdirect products of the intervals [~A V.~] aod (~A V,V].

We begin by

fcnn la 1\ b,a V

[a A b,a] x [8 A

Far aoy complete congruence À 00 a complete lattice

by aÀ

Reilly

1EtlMA 4.6. Let ~ and r be congruences on a lattice L and

a,b E L. The following statements are equivalent.

(ii) a r a v b ~ b.(i) a ~ a A b r b.

Proof. Ii (i) holds then

a - a v (a A b) r a v b and b - (a 1\ b) V b ~ a v b

which gives (i). The proof that (ii) implies (i) is similar.

DEr'J..:HTION If L,a,b,~ and r satisfy (i) and (ii) in Lemma 6.1,

then we wi1l say that a and b are ~r-neighbours. Congruences ~ and

r on a lat~ice L are said to be disjoint ii ~ n r - !.

~ 4.7. Let ~ and T be disjoint complete congruences on a

complete lattice L and Iet a E L. Then
~ T

a - a v a - a A a
~ T

.froof .. Since ~ and T are congruences, we have
•

a v a ~ a V a - a and a V a T a V a - a
~ T T ~ T ~

•
so that a V a (~ n T) a. But ~ and T are disjoint. Thereiore

~ T

a - a V a The second equality f0110\ol5 by duality.•
~ T

COROLu.RY 4.8. Let

on a complete lattice L

~ and

and lec

r be disj oint

a E L. Then

complete congruence5
~ Ta ,a are
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~T-neighbours and a , a
~ , are T~-neighbours.

~ ,
o a V a

~
,

a

~./'
a

a

a ,/ , a, ~

, a A a
~

,
froof. By Lemma 4. 7 • we have

~ ,
~

and
~

, ,
a A a - a ~ a a A a - a , a

from which we deduce the first claim. The second claim follows

similarly using Lemmas 4.6 and 4.7.

We are now ready for the main lattice theoretic observation. One of

the striking features of this result is the fact that neither

modularity nor neutrality appear in the hypotheses.

THEOREM 4.9. Let ~,T be disjoint congruences on a lattice L

and a,b E L be ~T-neighbours. Then the mappings

~: Z -; (z A a,z A bi, ~: (x,y) -; x V y

are mutually inverse isomorphisms between [a A b,a v bl and

[a A b,a] x [a A b,b].

Applying these lattice theoretic considerations to congruences, we

obtain:

THEOREM 4.10. (Pastijn and Trotter [15J. Theorems 5.1 and 5.2)

Let per.

(1) The mappings

ce,") '<v"
[p,/ v pT] and

-->,<n"

T
1 n p ),

K
p ,--;) (I n1

are mutually inverse isomorphisms between
K T

[p,p ) x [p,p J.
(ii) The mappings

1 ,(1 v PK' 1 v PT)' ce,")
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complete congruences on r:
and pT are KT-neighbours

(ii) This follows from

From Lemma 3.1. we know that K and T are disjoint
KIt follows from Corollary 4.8 that p

and the claim follows by Theorem 4.9.

(i) by dual1cy.

are mutuaIly inverse isomorphisms between (PK n PT.p] and

[PK,p) x [PT,p].
Proof. (i)

In order to provide some specific illustrations of the preceding

discussions in terms of varieties rather than fully invariant

congruences, we need to know some specific values for the upper

end points of some of the K- and T-classes.

LEMMA 4.1l.

(ii) ..,T _ ~,

(i)

lUI
T

K
~e~ - oç .

Proof. (i) See (Polàk [25]. Theorem 2).

(ii) See (Petrich and ReiIly [21]. Section 9).

We can now give some examples of applications in l(e~).

LEMMA 4.12. (i) (Pecrich [161, Theorem) The mappings

v ~ (V n ll, V n ~) , . (~,") ~ ~ v "

are mutually inverse isomorphisms between l(~) and l(B) x !(~).

(ii) (Hall and Jones (9l. Corollary 5.5 and Rasin [30].

Proposition 1) The mapp~ngs

V ~ (V n ll, V n e~). (~,") ~ ~ v"

are mutually inverse isomorphisms between [~.LDee] and

[lUI ,ll] x [lUI ,e~].

(iii) (Reilly [32]. Theorem 4.9) The mappings

V ~ (V n oç, V n e~) (~,") ~ ~ v "
are mutuaIly inverse isomorphisms between [~e~. C~l and

[~e~,oçJ x [~e~,e~J.
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5. POLAK'S THEOREH

The following subset has a special role to play in the study

of l (e:R) ,

Xo - [VK,V E l(e:R))

Examples of members·of Xo are plentiful and include alI group

varieties and alI non-orthodox varieties of completely simple semigroups.,
Since K is a complete congruence on l(e~) and Xo contains exactly

one representative from each K-class, we may consider Xo as being a

lattice with the lattice structure inherited from l(e~)/K. Thus, for~, V E

l (e:R) , ~ ~ V if and only if ~K ~ VK.

We now adjoin three elements to the bottom of Xo (below the trivial

variety ~) and extend the order on Xo to X - Xo U {L,T,Rl' as indicated

in the diagram below so that X becomes a lattice with KO as a

sublattice.

(V E [:l',e:R])

x -

Before proceeding, we require some additional notation:
2 •

XNS - che variety of left normal bands - [x - x, xyz - xzy]
2

~S - the variety of right normal bands - [x - x, xyz - yxz].

For V E l(eR) , let the mapping

V ~ V *
K

be defined by the following:

V
K if V .. ~,IJi13,1VIS

V * - L ii V - UB
K

T ii V - :l'

R if V - MB.
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~e wish to combine the above mapping with mappings associated wi,h T~

and T • Towards this end \Ile introduce "products" of TI and T Leer , r
2 T2

8
1

-8 - <TI,TrITI - TI' - I > and 8 U {l }r r
I 2

be che monoid with generators T
1

and T
r

subject to che relations - Tl'l
T2

- T lc is easy to see that every element of 8 can be written
r r

uniquely in canonical fom as

r - Tl T
2

· .. Tn where T. E (TI,Tr ), Ti"'T i + l1

For such an element r, lec Ir I - n, h(r) - TI and c(r) - T • Define a

8 1
n

relation '" on by

" ~.,. ~ I" I > 11' I or ,,-.,. or .,. - l.

Then <al,~) is the partially ordered set depicted on the left of che

diagram:

T
r TI

:X:-I
TrTI

TITrII

Ile also extend che definicions of V and V
T cO cover V for any

TI r

8
1 r

r E by defining VI - V and otherwise defining V inductively asr
follows: for r - Tl I 2 T E 8 and V E L(e~) leCn

V r - (VT T )T'
1· .. n-l n

Our main interest is in certain mappings of e1 into X.

81
Let ~ denote the set of alI ~ E X satisfying the f0110wing

conditions:

D( i) l~ E J(O'

DIii) ~ is order preserving,

D(iii) r E e, r~ - L ==> c(r) - Tr'

D(iv) r E 8, r~ - R .... t(r) - TI'
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DCv) a E
le ,1' E e at$ E Xo

or t(o) ~ h(T)

and either (J - 0

THEOREM 5.1.(PolAk [26], Theorem 3.6) ~ 1s a complete lattice (vith

respeet to the component·wise arder).

Polak's main theorem concerns those subvarieties of e~ that contain

the variety of semilattices.

THEOREM 5.2.(Polàk [26J, Theorem 3.6)

be defined by:

Far any V E [~,e~], let Xv E

VK if l' - 0

Then the mapping

v *TK otherwise

x: V ) Xv
1s an isomorphism of [~,e~} onto ~.

(V E [:f,ell])

Hany interesting subsidiary facts and applications of this theorem ean

be found in Polàk's three papers [25J, [26J and [27J.

A case to which PolAk's Theorem ean be quickly applied to give new

information, is the lattice !(~) of subvarieties of the variety oç of

orthodox completely regular semigroups lt is not hard to show that

~K - ~, where ç denotes the variety af graups .. Therefare, far any

V E l(~) I the part~ally ardered set af values af Xv may ~e depicted as

fallaws:

~1

~3

~5

--

~o

---
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where -o E X(_),

E X(_)U{ L , T ,

che lattice of varieties of groups and, for each n

R l. From.this ie is easy to deduce che following

'" l, _n
result.

IHEOREM 5.3. (Polak [26],

countably many eopies of L(~)

Theorem 4.2) !(~) is a subdirect produce of

and a single copy of l(B) .

One question aboue t(e~) ehae remained unanswered for a considerable

cime was whether or not ie is a modular lattice. Various results had been

obtained concerning various sublattices of t(e~) (see, for example, Rasin

[29) for che lattice of varieties of complecely simple semigroups and Hall

and Jones [9] for che lattice of varieties of completely regular semigroups

for which K is B congruence). The question was fioa11y answered in full

generality with che aid of Polak's Theorem by Pastijn:

~ 5,4,(Pasrijn [12], Theorem 18) !(e~) is modular.

Verifications of the modularity of !(C~) that are not dependent on

Polak's Theorem have been obtained by Pastijn [13} and Petrich and Reilly

[23] ,

Since the lattice of group varieties is a sublattice of !(e~) it

follows that t(CR) is not distributive. However. even in a

non-distributive lattice, there may be elements which have properties that

are normally associated with distributivity. More exactly, an element a

in a lattice L 1s neutral if the mapping

x -----7 (:<Aa, xva)

is a monomorphism of L onta a subdirect product of (a] and [a) (where (a]

and [a) denote the ideaI and filter of L. respectively, generated by a).

The usefulness of a neutral element a in a lattice L is that it

makes lt possible to convert certain types of problems 00 the whole lattice

L to (hopefully simpler) problems on the (hopefully simpler) sublattices

(al aod [a). One nice feature of modular ·lattices is that, by virtue of

the lemma below, in order to establish that an element is neutral it is oot

necessary to verify alI the cooditions in the definition each time.

LEMMA 5.5. ([7J) Far any element a in a modular lattice L. che

following statements are equivalent:

(i) a is neutral in L;
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(ii) ehe mapp1ng

~a :x ,
~a (x E L)

is an endomorphism of L',

(iii) the mapp1ng

" :x , xVa (x E L)
a

is an endomorphism of L.

Prior to Polak's Theorem, a few simple examples of neutral elements in

l(e~) were known. Far example, Hall and Jones [9] had shown that the

variety ~ of semilattices is neutral and Jones [11] extended the list to

include alI subvarieties of the variety N~ of normal bands.

Alsa Jones (11] had shown that ~~ and ~e~ are homomorphisms so that,

by the ·preceding theorem and lemma, we may conclude immediately that ~ and

e~ are both neutral in Z(e~). But now, with the techniques available on

account of Polak's Theorem it is 'possible to determine many more neutral

elements and to approach the search for neutral elements in a much more

systematic way.

The following ~s a partial listing of the varieties that are now known

to be neutral in l(e~):(for details, see Hall and Jones [9], Jones [11) and

Reilly [33])

~, e~, ~~, S, ~, LDeç,

e~(~~) the variety of completely simple semigroups with

abelian subgroups .
.

oç(~~) - the variety of orthodox completely regular

semigroups with abelian subgroups.

l(~)

l(oç(.~))

l(~(.~))

the variety of locally orthodox eryptograups

with abelian subgroups.

-all subvarieties af $

all subvarieties of ~(~~) .

alI subvarieties af LDeç(~~).

Some partial results ean alsa be obtained, sueh as the fallowing.

COROLLARY 5.6. (Reilly (33], Corallary 5.8) The variety

l(eçK) .

is neutral

Since ~ ~ ~, we must alsa have ~ _ ~K C~ and therefore al sa
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From this it can be shown that eç 1S neutra1 1n

An important feature af the ne~c theorem 1s the fact that certain

varieties are expressible as joins af well known varieties.

\.E..'1l'\A 5.7. (i) ~ v ç - oer;. (ii) ~ v e:l -~.

(iii) Dç v e:l - CLoer;.

Proci. (i) See (Petrich

(ii) See (Hall and Jones

(iii) See (Hall and Jones

5. 3) .

[16). Lemma l).
•[9], Coro11ary 5.4).

(91, Theorem 5.3 and Rei11y [32], Proposition

The mappings

-",,~vlf

COROLLARY 5.8. (i) (Petrich [16], Theorem)

V ,(Vn~,Vnç), (~,lf)

are mutually inverse isomorphisms between t(~) and t(~) x ~(~).

(ii) (Hall and Jones [9], Corollary 5.5, Rasin [3D]. Proposition 1)

The mapp1ngs

V ,(V n ~, V n e:l'), (~ ,".) , ~ v li'

are mutua11y inverse isomorphisms between tc.~) and the subdirect

product of t(~) and t(e~) consisting of alI those pairs (~, V) with

~n~-"ne:l'.

(iii) (Reilly [33], Theorem 5.9) The mapp1ngs

V ,(V n eç, V n Dç), (~, lf) , ~ v li'

are mutually inverse isomorphisms between L(~V~) and the subdirect

product of l(~) and t(Dç) consisting of alI those pairs (~, W) with

~ n oer; - li' n oer;.
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