STRUCTURE, CONGRUENCES AND VARIETIES OF COMPLETELY REGULAR SEMIGROUPS

NORMAN R. REILLY

1. LOCAL AND GLOBAL STRUCTURE

One area of research in the field of Semigroup Theory in which there

have been significant successes in recent years has been the subject of

completely regular semigroups. The aim of these lectures is to give a brief
review of some of the achievements in the theory of completely regular

semigroups. We will start with some familiar and well known results and

concepts,

An element a of a semigroup S 1is regular if there exists an element

X in S such that a = axa and a semigroup S 1is regular if every

element of S 1is regular.

If a, x € S, a semigroup, are such that a = axa and y = xax, then

a simple calculation will verify that a = aya and vy = yay. Such an

element y 1is called an inverse of a.

An element a of a semigroup S 1is completely regular if there exists

an element xXx € § such that a = axa and ax = Xa.

In particular, x must
be an inverse of a.

LEMMA 1.1. For any element a in a semigroup S, the following

statements are equivalent.
(i) a 1is completely regular,

(ii) a has an inverse with which it commutes.

(iii) HEl is a subgroup.

We say that a semigroup S 1is completely regular if every element of
S 1is completely regular.

LEMMA 1.2. For any semigroup S the following statements are
equivalent.

(1) S 1is completely regular.
(ii) S 1is a union of (disjoint) groups.

(iii) Every K - class of S 1is a group.



NOTATION Let GCR denote the class of all completely regular

semigroups and for any a € S € R, let a denote the inverse of a in

the (group) K - class Ha and let ao denote the element aa_l - a_la, the

identity of the group Ha'

It is not hard to see that the class UR 1s closed with respect to
products and homomorphic images. However, the additive group of integers is
completely regular but nas the infinite cyclic semigroup of positive
integers, which is not completely regular, as a subsemigroup. Thus the class
CR is not closed under subsemigroups. On the other hand, any subsemigroup of
a completely regular semigroup which is closed under inverses (a — a—l) is
also completely regular,

These observations suggest considering completely regular semigroups not
simply as semigroups but as semigroups endowed with a unary1operatinn (a —
a_l). This has now become the accepted viewpoint from which to study the

class CUR. When we do this the class UCOR becomes a variety of algebras

endowed with a binafy and a unary operation satisfying the following

identities:
Xx(yz) = (xy)z, X = xx_lx, (x_l)_l - X, xx_l - xwlx.
. . . . : . 0
In this context, consistent with earlier notation, we shall write x =
-1 -1

XX = = X "X.
The manipulation of inverses in completely regular semigroups can

present quite a problem. One observation that is sometimes

helpful is the following.

LEMMA 1.3. (Petrich and Reilly [19], Lemma 2.8) The wvariety GCR
satisfies the identity

xy)F = )y oy % ) ©

Recall that a simple semigroup is one without proper ideals. A

completely simple semigroup is one which is both completely regular and

simple.
let S be the disjoint union of the semigroups Sa (a € Y), where Y
is a semilattice and Sasﬁ - Saﬁ' Then S 1is said to be a semilattice of

the semigroups Sa, a € Y, and we write § = (Y;Sa)' The importance of
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this concept in the theory of completely regular semigroups was revealed by

the following theorem.

THEOREM 1.4, (Clifford [2] and (4], Theorem 4.6) let S be a

completely regular semigroup. Then 0 = § is a congruence, each J-class is
a completely simple semigroup and S/§ 1is a semilattice. Thus S 1is a

semilattice of its J-classes.

This theorem focusses the attention on the class of completely simple
semigroups, not just as an interesting special class of completely regular
semigroups but as an essential component of the structure of all completely
regular semigroups. That the class of completely simple semigroups
is an interesting class is also attested to by the fact that it can be
characterized in so many different ways, as illustrated in the next
theorem.

We adopt the notation E(S) for the set of idempotents of a semigroup

S.
THEOREM 1.5. The following conditions on a semigroup S are
equivalent.
(i) S 1is completely simple.
(ii) S 1is completely regular and satisfies the identity (a}cb)D - (ab)o.
(iii) S 1is completely regular and satisfies the identity (axa)o - ao.
(iv) S 1is completely regular and, for all a,b,x € S, ab K axb.
(v) S 1is completely regular and, for all a,x € S, a R ax,
(vi) S 1is regular and, for all a,b € S, aSb is a maximal subgroup of S.
(vii) S 1is regular and weakly cancellative (that is, ax = bx and =xa =

xb implies that a = b).
(viii) S 1is regular and a = axa implies that x = xax.

(ix) S 1is regular and every idempotent is primitive in E(S) (e € E(S)

is primitive if f € E(S) and ef = fe = € implies that e = f).

(x) S 1is simple and E(S) contains a primitive element.

It follows immediately from Theorem 1.5(il) and (iii) that C¥ 1is a

subvariety of UR.

For any 4-tuple (I,G,A;P) where G 1is a group, I and A are

non-empty sets and P: (A,1) — Py; is a function from AxXI to G, let
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M(I,G,A;P) = IXGXA together with the multiplication

(i,g,A0(J,h,p) = (i,gpkjh,p).
It is a straightforward exercise to show that MH(I,G,A;P) 1is a completely
simple semigroup. This construction is due to Rees and such semigroups are

therefore called Rees matrix semigroups. However, Rees matrix semigroups

are much more than examples of completely simple semigroups.

THEOREM 1.6. (Rees [31] and [4], Theorem 3.5) Every completely simple

semigroup 1is isomorphic to a Rees matrix semigroup.

The Rees Theorem is tremendously important in the study of completely
regular semigroups in general and completely simple semigroups in
particular. Congruences and homomorphisms can be effectively studied in
terms of the Rees matrix representations following from Theorem 1.6.
Indeed, the construction of Rees matrix semigroups is so simple, it would
almost seem as if any problem concerning completely simple semigroups could
be resolved by the simple expedient of representing all completely simple
semigroups as Rees matrix semigroups and then performing the appropriate
arithmetic. While many problems are indeed amenable to such an approach it

is not universally true as we shall see later.

We can view Clifford’s Theorem as giving a global structure to any
completely regular semigroup while Rees'’s Theorem provides a local
structure. However, much of the complexity in the study of completely
regular semigroups arises in going from the local to the global picture.
This 1s perhaps best illustrated by the following general structure theorem

for completely regular semigroups where the "simple" local components

interact by means of factors and mappings.

3

THEOREM 1.7.(Petrich, [17]) For every o = Y a semilattice, let Sa o

M(I ,G ,A ;P ) be normalized at a € I NA . For a = 8, let
a’' oo« a o

1 <, > S XI_,  — I_,
(1) Ry 5
(2) S —> G_, denoted b a — a,,
o B 4 p
3 , A XS — A
(3) [ 1iagxS, p
be functions such that, for a € Sa, b € Sﬁ



i) if i € I and X € A_,, then
() 6 g

Pyca,i>98P18,a11 7 Pa<a, >8P (2, a]i

(ii) it i € I and A € A , then
x e

a = (<a,i>, a_, [A,a]).

On S -agYSa define a multiplication by

(4) aocbh = (<a,<b,af>>,a

Eﬁp{&ﬁ,a]{b,&ﬁ}bﬂﬁ’ { [ﬂﬁ,ﬂj :b])

Suppose that

(ii1) for y <af, 1 €T X €A,

(<a,<b,1>>, a_p [[x,a],b]) = (<aob,i>, (aob)_,[X,a0b]).

b_,
[v,a]<b,y> "y
Then S is a completely regular semigroup whose multiplication restricted

to each Sa coincides with the given multiplication. Conversely, every

completely regular semigroup is isomorphic to one so constructed,

This result is remarkable for its complete generality. A special case

of particular importance arises as follows.
et S = {Y;Saj and, for all a, B €Y with a = g, let

ma,ﬁ: Sa ——— Sﬁ be a2 homomorphism such that
1) 9, L= 1,

2 f = B = 7, - .
(2) for a=p =7 Yo, 88,7 T Yo,

o b € Sﬁ’ we have ab = ama,aﬁb@ﬁ,aﬁ‘

we say that S 1is a strong semilattice of the semigroups Sa and write
S = |Y;S
(Y58 _» e,

If, in addition, for any a € S then

,ﬁ]' Clearly, any strong semilattice of completely simple
semigroups is completely regular. There are various nice characterizations
of the semigroups that arise in this way. We require a few preliminary
concepts.

Recall that a normal band is a band which 'satisfies the identity

axyb = ayxb and that a semigroup is a normal cryptogroup if H 1is a

congruence on S and S/H 1s a normal band.
For any completely regular semigroup S, let the relation =< be
defined in S by: for a,b € S
a<b &= a==eb = Dbf, for some e,f € E(S).
Let S be a completely regular semigroup with completely simple
components Sa‘ a€ Y. If S 1s such that, for a, €Y with a = 8, and

any idempotent e in S, there exists a unique idempotent £ in S
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with e = £, then § 1is said to satisfy JU-majorization.

Let
CF = the variety of completely simple semigroups
f = the variety of semilattices.

We can now provide a number of different characterizations of normal

cryptogroups.

THEOREM 1.8. For any semigroup S the following statements are

equivalent.
(1) S 1is a normal cryptogroup.
(ii) S 1is completely regular and, for all e € E(S), eSe 1is an inverse
semigroup.
(iii) S 1is completely regular and, for all e € E(S), E(eSe) 1is a
semilattice.
(iv) S 1is completely regular and satisfies D-majorization.
(v) S = (Y;Sn) is completely regular with completely simple components
Sa and for all a; g eY wi?h a*a B and for all a € SE, there.exists a
unique element a €& Sﬁ with a =< a.
(Vi) S = (Y;Sa) 1s a strong semilattice of the completely simple
semigroups Sa’ a €Y.
(vii) S is regular and a subdirect product of completely simple semigroups

with, possibly, a zero adjoined.

(viii) S € B v ¥.

2. CONGRUENCES

We begin our treatment of congruences with congruences on completely
simple semigroups. With the aid of the Rees Thénrem, congruences on
completely simple semigroups can be described fairly completely. The
details of the following treatment can be found in Howie [10].

et S = H(I,G,ﬁ;?). A triple (¥,N,7), where ¥ 1is an equivalence
relation on I, 7 1is an equivalence relation on A and N 1is a normal

subgroup of G, 1is said to be admissible if

1

i, ] P g B N
(1,j) € or (XA,pn) € = PyiPuiPuiPaj € N.

For any admissible triple (¥,N,7), define the relation p(f N 9) on
by L )



(1,a,A) PP N.T) (j.b,pw) e (i,j) € hp,—l{:ii#lle 7 and
PriPryPux® Pry €N
for some (all) x € I, ¢ € A.

THEOREM 2.1. For anj admissible triple (¥,N,7) is a

PN, T)
congruence on S = K(I,G,A;P) and all congruences on S are of this form.

Given the stucture theorems of Clifford (Theorem 1.4), Rees (Theorem
1.6) Petrich (Theorem 1.7), it would be natural to investigate the
properties of congruences on a completely regular semigroups by considering
their restrictions to the completely simple components and how they can be
reconstituted from these components. This approach has been succesfully
explored by Petrich [18]. However, here I wish to explore an approach to
the study of congruences which is less direct but which has provided a rich
harvest of insights into not only the behaviour of congruences but also the

lattice of varieties of completely regular semigroups.

DEFINITION Let p be a congruence on a completely regular semigroup

S. Then the kernel of p is

ker p = [ a € S: a p ao]

and the trace of p 1is
tr p PIE(S)'

The key observation about the kernel and trace of a congruence is that

in combination they completely determine the congruence.

LEMMA 2.2. (Pastijn and Petrich [l4], Lemma 2.10) Let p be a

congruence on a completely regular semigroup S. Then, for any elements
a,b € 8§,

apb aO trp bD and ab = € kerp.

Proof. let a,be S and a p b. Then ao p bU and ab_l p bU.
Hence ao trp b0 and abml € ker p. Conversely, suppose that ao trp bU
and abpl € ker p. Then

b = b(b_lb)b_lb
p b(a ta)b Tb
- ba T(ab Db
p ba_l(ab‘l)(ab"l)b

- b(a_la)b_la(b—lb)

O]



COROLLARY 2.3. (Feigenbaum [5], Theorem 4.1) Let A, p be congruences

on a completely regular semigroup S. Then

A = p &> ker A = ker p and tr A = tr p.

This leads to natural questions concerning the nature of those subsets
of a completely regular semigroup which are kernels for congruences and
those equivalence relations on the set of idempotents which are the traces
of congruences. The treatment presented here is essentially that of Pastijn

and Petrich [l4], specialized to completely regular semigroups as in (Petrich

and Reilly [24]).

DEFINITION A subset K of a completely regular semigroup S is said

to be a normal subset of S 1if it satisfies the following conditions:

(K1) E(S) ¢ K,

(K2) k€K = Kt e K,
" (K3) xy € K 2 yx € K, (x,y € 8),
(K4) x,xoy € K =» xy €K (x,y € §).

For any subset K of a semigroup S, we denote by Ty the largest

congruence on S for which K 1is a union of ﬂK-classes. Then

an, b = [xay € K & xby € K (x,y € Sl)]

e
If v 1s a relation on a semigroup S, then we denote by vy the
congruence on S generated by v, and if v 1is an equivalence relation

then we denote by 70 the largest congruence on § contained in 1.

THEOREM 2.4. (Pastijn and Petrich [1l4], Lemmas 2.4, 2.9 and Petrich and

Reilly {24]) Let K be a subset of a completely regular semigroup S. Then the

following statements are equivalent,
(1)' K is a normal subset of S.

(2) K is the kernel of some congruence on S.

(3) K 1is the kernel of T
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#
When (1) - (3) held, {(k,kG): k € K) is the smailest congruence and

Ty is the largest congruence on S with kernel K.

Next we consider the relations on the set of idempotents that arise from

CDHEIUEHC es.

DEFINITION Let S be a completely regular semigroup and r be an

equivalence relation on E(S). Then r 1is a normal equivalence if it

satisfies the following condition:

e r f = (xey)ﬂ T (xfy)o (x,y € Sl}.

THEOREM 2.5. (Pastijn and Petrich [14}, Lemma 1.3 and Petrich and
Reilly [24]) Let S be a completely regular semigroup and r_be an equivalence
relation on E(S). Then the following conditions are equivalent.

(1) r 1is a normal equivalence.

(2) r is the trace of some congruence on S.

%

(3) T = tr 7T

' ) * .
When (1) - (3) hold, then r is the smallest congruence and (HTH)O

is the largest congruence on S with trace r.

Having successfully characterized those subsets of S that can be
kernels and those equivalences on E(S) that can be traces, it is natural

to consider when a normal subset and a normal equivalence can be combined to

be the kernel and trace of a single congruence.

DEFINITION Let S be a completely regular semigroup, K be a normal
subset of S and r be a normal equivalence relation on E(S). Then

(K,7) 1is a congruence pair for S if K 1is a normal subset, 7 1is a

normal equivalence and the following conditions are satisfied:

(CPl) er f = [xey € K & xfy € K, for all x,y € 81]

(CP2) ke K = {xky)o T (xkong, for x,v € Sln

b
From the definition of e it follows that (CPl) could be replaced by

the equivalent condition

*
(CP1) er f = e Ty f, (equivalently, 7 C tr IK)

or, altefnatively, invoking (K3) we could replace (CPl) by

ke
(CP1) er f = J[ex e K & fx € K].



In the same spirit, (CP2) can be replaced by the equivalent condition

* 0
(CP2) K ¢ ker (KrK) .

For any congruence pair (K,r) for S, define the relation

b

P(R,7)
on S Dby
0 0 -1

a p(K,f} b = a b , ab e K (a,b € §).

THEOREM 2.6. (Pastijn and Petrich [14], Theorem 2.13 and Petrich and

Reilly [24]) Let S be a completely regular semigroup, K be a normal subset

of S and r be a normal equivalence relation on E(S). Then the following

statements are equivalent,

(1) (X,r) 1is a congruence pair for S.

(2) Ty N (HTH)D has kernel K and trace r.

(3) There exists a congruence p on S with kernel K and trace r.

(4) There is a unique congruence p on S with kernel K and trace r.
Whenever (1) - (4) hold, the unique congruence on S with kernel K

and trace r 1is

gy O
P(K,T} - Ty N (KrH) .

3. KERNEL AND TRACE RELATIONS

Throughout this section, let S denote a completely regular semigroup

and G(S) 1its lattice of congruences. Let the kernel relation K and the

trace relation T be defined en C(S) as follows.
AKp <= ker A = ker p (A,p € B(8))
AT p & trA=trp (\,p € B(S))

Clearly K and T are both equivalence relations. As gn immediate

consequence of Corollary 2.2, we have
LEMMA 3.1. KN T = ¢, the identical relation.

We consider K first. As a related characterization of the kernel

relation we have the following interesting obvservation.

LE 3.2. (Pastijn and Petrich {14], Lemma 3.9) Let X,p € T(S). Then

A K p > ANH = pnKHX.



Proof. First suppose that ker X = ker p. Then

aiAnHhb = a b, alb

= a i b, ab_l A b0 (since ao e bo)
) al b, ab € ker A = ker p
=L
&= a pnNH b,
Thus A N K = p Nn H., Conversely, iet ANH=pgnNnH. Then

a € ker A = a A NH ao
== a pnNH a
=3 a € ker p

so that ker A € ker p and, by symmetry, equality follows.

NOTATION Let X(S) denote the set of normal subsets of S ordersd oy

set theoretic inclusion.

For any family (XK,:1i € I} of normal subsets of S, it is clear that

(0K, is again a normal subset of S, From this it follows that X(S) 1is

a complete lattice with respect to the operations

Kl A Kz = Kl N LE and Kl % K2 -~ N{K € K(S): Kl U K2 ¢ K).

THEOREM 3.3. (Pastijn and Petrich [14], Lemma 2.9 and Petrich and
Reilly [24]) The mapping
ker: p —— ker p (p € T(S))
is a complete N - homomorphism of C€(S) onto X(S) which induces the
relation K on UT(S). For all p € F(S) the K - class of p 1is an
. K.
interval [pg,,2 ] where
K ur
Py = (p N K) and p = x
Unfortunately, K 1is not always a congruence. Let G be any
non-trivial group, Y = (0,1} be the two element semilattice and S = G X Y.
Let € denote the identical relation, w the universal relation, ¢ the
minimum group congruence and p the Rees congruence determined by the ideal
G X {(0). Then € K o but
EV p = p and oV p = w

where p and w do not have the same kernels.

However, there are circumstances under which K 1is a congruence,

The method of proof used by Pastijn to establish the fact (Theorem 4.4 below)
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that K is a congruence on the lattice of fully invariant congruences on the
free completely regular semigroup suggests the following discussion. We
begin with completely simple semigroups. Let (¥,N,7), ($",N'",7') and
(?,M,Q) be admissible triples for S = M(I,G,A;P) and let

]

= P Ng)y P T PoN,gry MY 7T T M Q)
A straightforward calculation will show that

ker p = [(i,a,)): ap, : € N)

with similar expressions for ker p’ and ker o. Consequently,
ker p = ker p' & N = N',

Now it is also the case that
p VY o

P(#vP ,MN,TVQ)
so that

ker p Vo = ((i,a,N): ap € MN)

Al _
with a similar expression for ker p’' Vv o. Therefore, it is clear that

ker p = ker p' = ker p Vo = ker p' Vo
whence K 1s a congruence on C(S) and the mapping ker 1is a homomorphism
on ¥U(S) for any completely simple semigroup S.
This observation has consequences for any completely regular semigroup.
To see this, let S§ = U S be a completely regular semigroup with

acyl o

completely simple components Sa and let p, p', o € (9], the sublattice

of UT(S) consisting of those congruences contained in I, be such that ker p

- ker p'. Let

- ) — I —
P pES : P, pls and g Jls (a €Y).
a o a
Then ker p = ker p'. Also
a e
- p VYV o = U pogopo,, K 0p where the union runs over compositions

of arbitrary length

- O . .0 i [
U agYpa Gaﬂ. P since p, o € (D]

e U U O Cr___f.'l
aeY Pa Ha ﬁa
agY pa Ua

Hence
v/ -
(p ) P,V O,
and

ker p Vo = Uker(p Vv U)a
= U ker (pa \% aa)
- U (ker PV ker aa) since ker 1is a homomorphism when
applied to the lattice of congruences on a

completely simple semigroup



lllll

- ker p' V o.

Thus we have established the following theorem:

THEOREM 3.4. For any completely regular semigroup, the mapping ker 1s

a homomorphism on (D].

Parallelling Lemma 3.1, we have the following result characterizing

the trace relation.

LEMMA 3.5. (Pastijn and Petrich [14], Lemma 6.5) Let XA,p € U(S).
Then

AT p e AVH = pvVvH,

Combining Lemmas 3.1 and 3.5, we obtain a rather curious test for the

equality of congruences.

LEMMA 3.6. Let X,p € T(S). Then
A = p &= ANK = pnNnH and A VH = p VK,

In dealing with expressions of the form p Vv X, it is sometimes useful

to know the following simpler descriptions.

LEMMA 3.7. For any p € U(S),
p VHE = pHp = HpH,

NOTATION Let J(S) denote the set of all normal equivalence relations
on E(S).

Clearly the intersection of any family of normal equivalences is again
a normal equivalence. From this it follows that the set 7(S) 1is a
complete lattice with respect to the operations

cAT = oNT and o V1t = N{peT(S): curgopl.

THEOREM 3.8. (Pastijn and Petrich [14], Theorem 4.20) The mapping

tr: p — tr p (p € T(S))
is a complete hamomorphism of ¥T(S) onto J(S) inducing the relation T

on &G(S). Moreover, for each p € C(S), the T-class of p 1is an
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interval [pT, pT] where

* T O
pp (tr p) and . »p - (p Vv H) .
In contrast to the fact that K need not always be a congruence on

C(S), we have the following immediate consequence of Theorem 3.8.

COROLIARY 3.9. T 1is a complete congruence on UTU(S).

From Theorems 3.3 and 3.8, we see that the equivalence relations K
and T are such that every class is an interval in the lattice U(S). These
facts, together with lLemma 3.1 enable us to give a purely lattice theoretic

proof of the next observation.

PROPOSITION 3.10, (Pastijn and Petrich [14], Thecrem 3.5) Let p € B(S).

Then

Proof. We have

-
Pg = Py vV Pp =P
and, by the convexity of the class pK, 1t follows that K p.
Similarly, Py v Prr T p which, by Lemma 3.1, implies that Py V p = P

The second equality in the statement of the proposition follows by duality.

There are two additional relations on ©€(S) that are closely related
to T. In order to recognize that these relations are natural relatives of

K and T, it is helpful to consider slightly different characterizations

of K and T.
let p € T(S). Then

p 1s idempotent pure if ker p = E(S),

p 1s idempotent separating 1f tr p = ¢ or,

equivalently, p C K.

Clearly,
AKp & ker A = ker p = ker Anp
<= ker A/(Anp) = E(S/(Anp)) = ker p/(ANp)
= AJ(ANp) and p/(ANg) are both idempotent pure.
Similarly,

AT p & tr A = tr p = tr ANp

]

tr A/(Ap) = € = tr p/(ANp)



= AS(ANp) and p/{ANg) are both idempotent separating
=  A/(np), p/(A0p) < H.

It is this very last characterization of T that leads to two
additional relations on UT(S): for Xx,p € U(S),

AT, p s A/(Ap), p/(Ap) C F
A Tr o = A/(Anp), p/(Anp) & R,
We refer to T£ as the left trace relation and to Tr as the right trace

relation on U(S).

For any congruence p € E(S), the left trace and right trace of p

are defined to be
ltr p = (p V ﬂ)o and rer p o= (p Vv R}O‘

Then an equivalent characterization of the relations TE and Tr is given

by the following: for AX,p € U(S),
A Tf p & ltr A = ltr p and A Tr p &= Tty A = rtr p.

The parallelism between the relations T, TE' and Tr is brought out

strongly in the next result,

THEOREM 3.11. (Pastijn and Petrich [14], Lemma 6.5) The mappings

p —— p V H, p —> p V 2, g —> p V R
are complete homomorphisms of the lattice ©€(S) 1into the lattice FE(S) of

equivalence relations on § 1Iinducing the relations T, TE and Tr'

respectively. Consequently, the relations T, TE and Tr are complete

congruences on &(S).

As an immediate consequence, to match Lemma 3.5, we have

COROLLARY 3.12. (i) A Té p & A VZE = pvVvZE.

(1i) A T_p & AVER = pV&

Since TE and Tr are complete congruences, it follows that all the

T,-classes and T -classes are intervals. For any p € T(S), we define
2 0 r oo
£ r .
P s Pm 1 P and p Dy settlng
.LE Lr - —
"X r

PTy = [opn wp ) and PT = [pp v P 7]

£ r

&9



The next result sets out some important basic connections between the

relations T, T and Tr.

£

THEOREM 3.13. (Pastijn and Petrich [14]), Corollary 4.8 and Theorem 4.14)
(1) TE N Tr - T,
(ii) For any p € C(S),

and p A p - p

TE Tr
P p
K T
p p
P
PR 4\
p P
T£ Tr

In order to give more explicit descriptions of the endpoints of T£~
and Tr-classes, it is convenient to introduce the following relations.
Define

e <, f T e = ef (e,f € E(S))

and define the relation = dually.

PROPOSITION 3.14. (Pastijn and Petrich [14], Theorem 4.12)
Let p € T(S).

T
r

. * 0
(1) P = (P 0=y and p - (p V&) .
T
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(11)

4., THE LATTICE OF VARIETIES

We shall require some notation., For any subvariety V¥V of U, we
shall write
E(V) = the lattice of subvarieties of V¥
FV = the relatively free completely regular semigroup in ¥
on a countably infinite set X
' = the lattice of fully invariant congruences on FUR.
Fundamental to the discussion of varieties is the standard
correspondence between varieties and fully invariant congruences.
For V¥V € EZ(CR), let Py be defined on FCOR by
Py = ((u,v) € FERAXFER: ufd = vf, for all homomorphisms #:FER —> S € V).
Then the mapping
m: YV — py, (Y € Z(BR))
is an antiisomorphism of Z(CR) onto T.

The study of E(BR) involves many special varieties as reference

points.,
J - trivial semigroups (X = y]

EZ - left zero semigroups (xy = x]

RZ - right zero semigroups XY = V]

RB - rectangular bands (Xyz = XZ]
- 000 0

Rely - rectangular groups (Xxy z = (xz) ]

. : 2
# - semilattices (X7 = X, XYy = yX]
Z - bands [12 - %]

A8 - mnormal bands ;xz = X, axya = ayxa]

-0 0
§ - groups (X =y ]

-0 0

47 - abelian groups (X = ¥ , Xy = yX]
. 0

dn - abelian groups of exponent n ~KD ~ yO, Xy = yX, X = X ]
. 0 .

L§ - left groups .KGY = XD]

RE - right groups [xﬂyo = yo]

. , 00 C O
L - semilattices of groups (x 'y =y x ]

C¥ - completely simple semigroups {{xyz)o = (xz}o]

0% - orthogroups [KOYO - (KDYG)O}
0 0.0 0

C¥ - cryptogroups ((xy ) = (xy) ]
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00y - orthocryptogroups {xoyo - (EOYO)D, (HUYU)G -~ (EY)U]

XCG - normal cryptogroups (completely regular semigroups for which
H 1is a congruence and S/H 1is a normal band).
LOEY - locally orthodox cryptogroups (that is, all S € FR such
that eSe € OCF for all e € E(S)).
ClLOEG - completely regular semigroups for which the core (that is,

the subsemigroup generated by the idempotents) lies in LIXE

The first part of ZE(ER) to be studied in any depth was the lattice
£(8) of subvarieties of the variety 8 of bands. Here is the familiar

diagram for [¥#,8] due to Birjukov [l], Fennemore {6] and Gerhard {8]:

The next part of the lattice Z(ER) to be studied in depth (excluding
the lattice of varieties of groups, which has been studied for many vears,
of course) was the lattice E(E¥) of subvarieties of the variety of
completely simple semigroups. Most of the work on Z(G¥) to date has
taken advantage of the description of the free completely simple semigroup

described by Clifford and Rasin (independently), in 1979.
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THEOREM 4.1.(Clifford [3] Theorem 7.4, Rasin [28] Theorem 1) Let X

be a non-empty set and fix z € X. Let Y = {pK y:x,y € X\(z}) be a set,
indexed by pairs of elements from X different from =z and let G be the

free group on Z = X U Y. Let P, , =P, = 1, the identity of G, for all

p. 4

x € X, and let P = {px y) be the X X X matrix with (R,y)th entry equal

to p, .. Then FBS(X) - (K(X,G,X:P),6) where x§ = (x,x,x), for all x €
X.

NOTATION Let ¥ denote the set of endomorphisms w of G for which

there exist mappings ¢ and % of X into itself such that, for all

X,y € X,
-1 « =1

) wa,wapzw,yw’

p, W = Pz¢.3¢(P

X,y XY, Z@

Let X denote the set of normal subgroups of G which are invariant

under all elements of &, It is easily verified that ¥ 1is a sublattice

of the lattice of normal subgroups of G.

THEOREM 4.2, (Rasin [28], Theorem 3) The interval ([&8,8¥] 1is

anti-isumurphic'tu the lattice X,

Because of this result, most of the advances to date in the study of

L(E¥) have involved the study of the structure of G and X.

NOTATION Let & denote the variety of all completely simple

semigroups with the property that the product of any two idempotents lies

in the centre of the X-class containing it. This variety is defined by

the identity |
00
ax a ya = aya X a. .
For any ¥ € E(B¥), 1let J(V) denote the €lass of all idempotent
generated members of ¥V and let <J¥(V)> denote the variety of completely

simple semigroups generated by J(V).

The largest ideal of ZX(G¥) to have been given a fairly precise

characterization is Z(€).
THEOREM 4.3, (Petrich and Reilly [20], Thénrem_B,ll) The mapping

Cid —— (4 N RS, <IF> NG, &N E) (% € £(B))

is an isomorphism of ZX(¥) onto the subdirect product
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((U,¥,¥) € E(RB) X L(AG) X E(B): V C W, U w RB = ¥ = 7).

Despite the "simple" characterization of completely simple semigroups
provided by the Rees Theorem, the structure of ZX(¥¥) outside of the ideal

L(T), remains a mystery,

In order to probe deeper into the structure of ZX(CR), we take

advantage of the recent techniques for investigating congruences that were

described in earlier sections.

In Theorem 3.10, we saw that the relations T, T£ and Tr are complete

congruences on U(S), for any completely regular semigroup ©§, but that K

need not be. We now have:

THEOREM 4.4, (Poldk [25] Theorem 1, Pastijn [12] Theorem 11) K is a

complete congruence on I.

Thus K, T, TJE and Tr are all complete congruences on I'. Under the

antiisomorphism n , these carry over to complete cnngruences on ZX(CR):
U V
K = Py K Py UTY = Py T Py

YT,V & po T YT V & py T

2 2 Py r Py
The classes of any complete congruence are intervals and so it is

convenient to denote the intervals for these four congruences as follows:

K
TE T
T v 71, V?I - [V v

2 T

YT, = (¥

THEOREM 4.5.(Poldk [25]) Theorem 1 and [26] Theorem 1.6, Pastijn [12]

Theorem 8) The mappings

K

V — VvV, VvV —YVY V — ¥ (VY € E(CR))

T£ Tr

are complete endomorphisms of Z(¥R) inducing the congruences K, T

P and Tr'

Somewhat surprisingly, the mapping
V-—7, (V € Z(CR))
is not an endomorphism of ZX(UR) (see Petrich and Reilly [22]}, Proposition
7.6). In addition, the mappings associated with the other ends of the

intervals of K, T, T£ and Tr are not endomorphisms. An interesting and
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useful fact is that the upper ends of the intervals of X, TE and Tr can be
described in terms of Mal’cev products (Pastijn [12] Lemma 3, Theorem 13):
T T

v* o RBo(yvPY, ¥ . rgoy, Vv T = RCoV,

An alternative expression tfor VK is VK - BoV,

One approach used in the study of E(BR) has been to describe certain
intervals of the form [U A V,U Vv ¥], for suitable U,V € Z(CR), as
particular subdirect products of the intervals [U A V,¥] and [¥ AV, V].

We begin by studying the circumstances under which an interval of the
form {a A b,a vV b] in a lattice may be isomeorphic to the product
(a A b,a] X [a A b,b] with a view to applying this to the lattice Z(TR).

For any complete congruence A on a complete lattice L and

any a € L, the class a)X 1is an interval. We define a and ak

A
by al = [al,ak}. The following discussion is taken from (Petrich and

Reilly [23]).

LEMMA 4.6. Let x and r be congruences on a lattice L and

a,b € L. The following statements are equivalent.

(i) a x a A’ b 1t b. (ii) a r a v b k b.
Proof. 1If (i) holds then
a=aVvi({(aAab) r avb and b=(aAb)Vb kx avh

which gives (i). The proof that (ii) implies (i) is similar.

DEFINITION If L,a,b,x and 7 satisfy (i) and (ii) in Lemma 6.1,

then we will say that a and b are «r-pneighbours. Congruences k and

r on a lattice L are said to be disjoint if kK N 1 = ¢.

LEMMA 4,7, Let « and r be disjoint complete congruences on a

complete lattice L and let a € L. Then
K T
a=a Va =a Aa

% T

Proof, 8Since k and r are congruences, we have

a Vv a XK awva =a and a Vv a r a V¥V a= a
K T T K T K

so that a V a_ (k. N r) a. But x and r are disjoint. Therefore

a=a Voa_. The second equality follows by duality,

COROLIARY 4.8. Let k and 1 Dbe disjoint complete congruences

. I
on a complete lattice L and let a € L. Then a , a  are
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x7-neighbours and a , a  are r7x-neighbours.

K T
o a VY a

6 a4 A a
K T

Proof. By Lemma 4.7, we have

K

K T K T -
a A da = 3a K a and a A a =a r a

from which we deduce the first claim. The second claim follows

similarly using Lemmas 4.6 and 4.7.

We are now ready for the main lattice theoretic observation. One of
the striking features of this result is the fact that neither

modularity nor neutrality appear in the hypotheses.

THEOREM 4.9. Let «k,r be disjoint congruences on a lattice L
and a,b € L be xkr-neighbours. Then the mappings
w: 2z — (z A a,z A by, Y: (X,¥) D X VY
are mutually inverse isomorphisms between [a A b,a v b] and

[a A b,a] X [a A D,b].

Applying these lattice theoretic considetations to congruences, we

obtain:

THEOREM 4.10. (Pastijn and Trotter [15], Theorems 5.1 and 5.2)
let p € T.
(1) The mappings
6 — (G np, ENp),  (E,m) — £V
are mutually inverse isomorphisms between [p,pK \% pT] and
[P,PK] X [P:PT}- |
(ii) The mappings
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are mutually inverse isomorphisms between [pK N pT,p] and

Proof. (i) From Lemma 3.1, we know that K and T are disjoint
complete congruences on [I'. It follows from Corollary 4.8 that pK
and pT are KT-neighbours and the claim follows by Theorem 4.9.

(i1) This follows from (i) by duality.

In order to provide some specific illustrations of the preceding
discussions in terms of varieties rather than fully invariant
congruences, we need to know some specific values for the upper

end points of some of the K- and T-classes.

LEMMA 4.11. (i) T~ = 8, EX = ReE" = 0C .
(ii) I° = ¢, R8T = Ref® = E¥.

Proof. (i) See (Poldk [25], Thenfem 2).
(ii) See (Petrich and Reilly [21], Section 9).

We can now give some examples of applications in EZ(CR).

LEMMA 4.12, (i) (Petrich [16], Theorem) The mappings
V — VY n &8, V¥ nk),- (U, ¥) — U V ¥

are mutually inverse isomorphisms between ZIL(IX¥F) and ZIZ(B) X Z(§).

(ii) (Hall and Jones [9], Corollary 5.5 and Rasin [30],
Proposition 1) The mappings

V — (VY n 38, V Nn TGP, (U, ) — U V ¥
are mutually inverse isomorphisms between [RB,LIXY] and
[RB,8] x [R8,U¥].
(iii) (Reilly [32], Theorem 4.9) The mappings
V — (VN 0Og, V N T¥) (U, ) — 4 v ¥

are mutually inverse isomorphisms between [Ref, CLIXE] and

[(Ref , 0] X [Rely,C¥].
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S. POLAK'S THEOREM

The following subset has a special role to play in the study
of ZX(CR):

KD = {VK:V € L(CR))

Examples of members of KD are plentiful and include all group

varieties and all non-orthodox varieties of completely simple semigroups.

.

Since K 1s a complete cangruencé on Z(CR) and KX contains exactly

0

one representative from each K-class, we may consider X, as being a

0
lattice with the lattice structure inherited from ZX(ER)/K. Thus, for U, V €

£(BR), U =<V¥ if and only if UK < VK.

We now adjoin three elements to the bottom of KX (below the trivial

0

0 to K = KD v {L,T,R} as indicated

in the diagram below so that X becomes a lattice with KX

variety 7) and extend the order on X

45 &

0

sublattice.

Before proceeding, we require some additional notation:
ENB = the variety of left normal bands = [xz = x: XyzZ = XZY]
RNB = the variety of right normal bands = [:-a:2 - X, Xyz = yxz].
For V € L(CR), let the mapping
V - VK* (VY € [#,BR])
be defined by the following:

VK if V = P,ZNB,RNB
VK* — L. if V = ZAB

T if V=¥

R if V = RNB,
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We wish to combine the above mapping with mappings associated with TE

and Tr.__Towards this end we introduce "products™" of T, and T_. Let

2 1

O = <T T [Tz - T T =T > and 8 =86 U (1)
r!' 2 T Y

2’ 2’

. 2
be the monoid with generators T£ and Tr subject to the relations T£ - Tﬁ,
2

Tr - Tr' It is easy to see that every element of 8 can be written

uniquely in canonical form as

T - T1T2"'Tn where Ti & {TE’Tr}’ T

For such an element r, let |ri =~ n, h(r) =T

i#Ti+l

1 and t(r) = Tn' Define a

relation = on 81 by

o<1 & |o|l>|r] or o=1 or r =1,
Then (81, <) 1is the partially ordered set depicted on the left of the
diagram:
1
Tr 'I'JE -
¢ + |
TETI | TrTf ) X
T T,T_ T,T_T,
We also extend the definitions of VT and ﬁT to cover Vr for any
2 r
T € El by defining Vl = ¥ and otherwise defining Vr inductively as
follows: for r = TlT2 . Tn €8 and YV € Z(CR) let
Ve U r T
1 n-1 n 1
OQur main interest is in certain mappings of 8 into X.
1
Let ¢ denote the set of all ¢ € X" satisfying the following
conditions:
D(i) 1¢ € K

O !

D(ii) ¢ 1is order preserving,
D(iii) r € B8, 7¢ = L = (1) = Tr'

D(iv) 1 € 8, 7¢ = R == t(r) = Ty
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D(v) o € el,r € 8, o¢p € HO and either o = @

or t(o) » h(r) mch (or)d 2 (a¢)TK*.

THEOREM 5.1.(Poldk [26], Theorem 3.6) ¢ 1is a complete lattice (with

respect to the component-wise order).

Poldk’'s main theorem concerns those subvarieties of CFR that contain

the variety of semilattices.

1
THEOREM 5.2.(Poldk [26], Theorem 3.6) For any ¥ € [#,88], let x, € X

be defined by:
.

'VK if r =@
TXy = |
v % otherwise
7K
Then the mapping
x: ¥ ———> x (Y € [#,BR])

is an isomorphism of [¥,CR] onto &,

Many interesting subsidiary facts and applications of this theorem can

be found in Poldk'’s three papers [25], [26] and [27].

A case to which Poldk's Theorem can be quickly applied to give new
information, is the lattice E(0f) of subvarieties of the variety O§ of
orthodox completely regular semigroups It is not hard to show that
UQK - G, where.ﬁ denotes the variety of groups. " Therefore, for any
V€ £(0§), the partially ordered set of values of Xy may be depicted as

follows:

61 %)
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where ﬁo € 2(§), the lattice of varieties of groups and, for each n = 1, @n

c 2(G)u{ L , T, R}. From this it is easy to deduce the following result.

THEOREM 5.3. (Poldk [26], Theorem 4.2) E(Of) is a subdirect product of
countably many copies of Z(§) and a single copy of Z(3).

One question about E(BR) that remained unanswered for a considerable
time was whether or not it is a modular lattice, Various results had been
obtained concerning various sublattices of Z(FR) (see, for example, Rasin
(29] for the lattice of varieties of completely simple semigroups and Hall
and Jones [9] for the lattice of varieties of completely regular semigroups
for which K 1is a congruence). The question was finally answered in full

generality with the aid of Poldk'’s Theorem by Pastijn:
THEOREM 5.4.(Pastijn [12], Theorem 18) E(FR) is modular.

Verifications of the modularity of Z(UR) that are not dependent on
Poldk’'s Theorem have been obtained by Pastijn [13] and Petrich and Reilly
23]. '

Since the lattice of group varieties is a sublattice of ZIX(CR) it
follows that Z(ER) is not distributive. However, even in a
non-distributive lattice, there may be elements which have properties that
are normally associated with distributivity. More exactly, an element a
in a lattice L 1is neutral if the mapping

X —> (xAa, Xva)
is a monomorphism of L onto a subdirect product of (a] and [a) (where (a]
and [a) denote the ideal and filter of L, respectively, generated by a).

The usefulness of a neutral element a in a lattice L is that it
makes it possible to convert certain types of problems on the whole lattice
L to (hopefully simpler) problems on the (hopefully simpler) sublattices
(a] and [a). One nice feature of modular -lattices is that, by virtue of
the lemma below, in order to establish that an element is neutral it is not

necessary to verify all the conditions in the definition each time.

LEMMA 5.5. ([7]) For any element a in a modular lattice L, the

following statements are equivalent:
. __,,-HTI';""'H _
(i) a 1is neutral in L; ams
S o
W -
N4,
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(ii) the mapping
pa:x ——> XAAa (x € L)
is an endomorphism of L;
(iii) the mapping
Yy X —> XVa (x € L)

a
is an endomorphism of L.

Prior to Poldk’s Theorem, a few simple examples of neutral elements in
E(CR) were known. For example, Hall and Jones [9] had shown that the
variety ¥ of semilattices is neutral and Jones [1l] extended the list to
include all subvarieties of the variety ¥B of normal bands.

Also Jones [1ll] had shown that and Hpp Aare homomorphisms so that,

L
&
by the preceding theorem and lemma, we may conclude immediately that § and
C¥ are both neutral in ZXZ(CR). But now, with the techniques available on
account of Poldk’s Theorem it is possible to determine many more neutral

elements and to approach the search for neuttral elements in a much more

systematic way,

The folimwing is a partial listing of the wvarieties that are now known
to be neutral in.ﬁ(ﬁﬁ):(far details, see Hall and Jones (9], Jones [1ll] and
Reilly [33])

G, ©r, 45, 8, O, LOGE,

CP(4AG) - the variety of completely simple semigroups with
abelian subgroups.

O (4%) - the variety of orthodox completely regular
semigroups with abelian subgroups.

LOCG (4G) - the variety of locally orthodox cryptogroups
with abelian subgroups.

2(8) - all subvarieties of 8
L(OG(4G)) - %ll subvarieties of OF(Af).
L(LOCTY (4G )) - all subvarieties of LOCT(AF).

Some partial results can also be obtained, such as the following.

COROLIARY 5.6. (Reilly [33], Corollary 5.8) The variety UC§ 1is neutral
in Z(ECYY.

Since § C CF, we must also have Of = gK - EﬁK and therefore also
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cG v O§ C E@K . From this it can be shown that €f is neutral in
2(EG v 0%).

An important feature of the next theorem is the fact that certain

varieties are expressible as joins of well known varieties.

LEMMA 5.7, (i) B v § = 0O6¢. (ii) 8 v 0¥ = LIXE.

(iii) OC v B = CLOGE.

Proof. (i) See (Petrich [16], Lemma 1).

(ii) See (Hall and Jones [9], Corollary 5.4).

(iii) See (Hall and Jones [9], Theorem 5.3 and Reilly [32], Proposition
5.3).

COROLIARY 5.8. (i) (Petrich [16], Theorem) The mappings
YV —— (YN8, VN, (U ¥) —> U v ¥

are mﬁtually inverse isomorphisms between Z(OXF) and Z(8) X Z(§).
(ii) (Hall and Jones [9], Corollary 5.5, Rasin [30], Proposition 1)
The mappings
V— (VNnB3B, V nCYP), (U, ) —— U VvV ¥
are mutually inverse isomorphisms between ZIZ(LOXE) and the subdirect
product of Z£(8) and Z(B¥F) consisting of all those pairs (U, ¥) with
UnNn38=wWnCTL. |
(iii) (Reilly [33], Theorem 5.9) The mappings
V— (V nCg, VvV n OF), (U, ¥) —— U v ¥
are mutually inverse isomorphisms between Z(CGVOY) and the subdirect

product of EZ(CF) and ZL(0OF) consisting of all those pairs (U, ¥) with
U N OCG =¥ n OCG.

REFERENCES
(1] A.P.Birjukov, Varieties of idempotent semigroups, Algebra i Logika,
9(1970), 255-273 (Russian), AMS Translation,
(2] A.H.Clifford, Semigroups admitting relative inverses, Annals of Math.
42(1941), 1037-1049.
(3] A.H. Clifford, The free completely regular semigroup on a

83



set, J. Algebra 59 (1979), 434-451.

(4] A.H.Clifford and G.B.Preston, The algebraic theory of semigroups, Amer.
Math. Surveys No., /, 1961, Providence.

[5] R.Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (1979),
373-377.

(6] C.F.Fennemore, All varieties of bands, Math. Nachr. 48 (19/1),
1:237-252, I1: 253-262.

.[7] G.Gratzer, General lattice theory, Academic Press, New York, 1978.

(8] J.A. Gerhard, The lattice of equational classes of idempotent
semigrﬂups,"J;Algebra 15(1970), 195-224.

(9] T.E.Hall and P.R. Jones, On the lattice of varieties of bands of groups,
Pacific J. Math, 91(1980), 327-337.

[10] J.M.Howie, An Introduction to Semigroup Theory, Academic Press, London,
1976. |

[11] P.R.Jones, On the lattice of varieties of completely regular semigroups,
J. Austral. Math. Soc. (Series A) 35 (1983), 227-235.

[12] F.Pastijn, The lattice of completely regular semigroup varieties,
preprint. |

(12] F.Pastijn, Commuting fully invariant congruences on free completely
"regular semigroups, (manuscript).
[14] F.Pastijn and M. Petrich, Congruences on regular semigroups, Trans.
Amer., Math. Soc. 295(1986), 607-633.
[15] F. Pastijn and P.G. Trotter, Lattices of completely regular semigroup
varieties, Pacific J. Math. 119 (1985), 191-214.
[16] M.Petrich, Varieties of orthodox bands of groups, Pacific J. Math.,
58(1975), 209-217. |
[17) M.Petrich, A structure theorem for completely regular semigroups,
Proc. Amer. Math, Soc. 99(1987), 617-622.

[18] M.Petrich, Congruences on completely regular semigroups, preprint.

(19] M.Petrich and N.R.Reilly, Bands of groups with universal properties,
Monatshefte fir Mathematik 94(1982), 45-67.

(20] M.Petrich and N.R.Reilly, All varieties of central completely simple
semigroups, Trans. Amer. Math. Soc. 280(1983), 623-636.

[21] M. Petrich and N.R. Reilly, Semigroups generated by certain
operators on varieties of completely regular semigroups, Pacific
J. Math. 132 (1988), 151-175.

[22] M.Petrich and N.R.Reilly, Operators related to E-disjunctive and

fundamental completely regular semigroups (to appear).

84



[23] M.Petrich and N.R.Reilly, The modularity of the lattice of varieties of
completely regular semigroups and related representations (to appear).

[24] M.Petrich and N.R.Reilly, Completely regular semigroups (manuscript).
[25] L.Pol&k, On varieties of completely regular semigroups I, Semigroup
Forum 32(1985), 97-123.

[26] L.Poldk, On varieties of completely regular semigroups II, Semigroup
Forum 36(1987), 253-284.

[27] L.Poldk, On varieties of completely regular semigroups III, Semigroup
Forum 37(1988), 1-30.

[28] V.V. Rasin, Free completely simple semigroups, Ural. Gos. Univ.

Mat. Zap. 11 (1979), 140-151 (Russian).

[29] V.V.Rasin, On the lattice of varieties of completely simple semigroups,
Semigroﬁp Forum 17(1979), 113-122.

(30] V.V.Rasin, On the varieties of Cliffordian semigroups, Semigroup Forum
23(1981), 201-220.

(31] D.Rees, On semi-groups, Proc. Cambridge Phil. Soc. 36(1940), 387-400.
[32] N.R.Reilly, ﬁarieties of cnmpletelf regular semigroups, J.

Austral. Math. Soc. (Series A) 38 (1985), 372-393.

[33] N.R.Reilly, Completely regular semigroups, Proc. of the

Inter. Conf. on Algebra, Lisbon (1988).

Dept. of Math. and Stat.,

Simon Fraser University,

B.C., Canada V5A 185.

UNIVERSITA STUD! DI LECCE

FAC. DI SCIENZE DPT. MATEMATICO

N. di mnventario ?Liﬁfﬁﬁ ...................................

Red. Nuovi Inventari D.P.R. 371/82 buono
& i - ) {:,. g !
di carico n, 3,63, del CL-f8-Li%0

. & FETREFad R

foglio n. 2.7

85



