CHAPTER 1

A SHORT INTRODUCTION TO BANACH LATTICES AND POSITIVE OPERATORS

In this chapter we give a brief introduction to Banach lattices and positive operators. Most results of this chapter can be found, e.g., in [26], [1] or [21].

1.1 BANACH LATTICES

A non empty set M with a relation \leq is said to be an *ordered set* if the following conditions are satisfied.

- i) $x \le x$ for every $x \in M$,
- ii) $x \le y$ and $y \le x$ implies x = y, and
- iii) $x \le y$ and $y \le z$ implies $x \le z$.

Let *A* be a subset of an ordered set *M*. The element $x \in M$ (resp. $z \in M$) is called *an upper bound* (*lower bound* resp.) of *A* if $y \le x$ for all $y \in A$ (resp. $z \le y$ for all $y \in A$). Moreover, if there is an upper bound (resp. lower bound) of *A*, then *A* is said *bounded from above* (*bounded from below* resp.). If *A* is bounded from above and from below, then *A* is called *order bounded*. Let $x, y \in M$ such that $x \le y$. We denote by

$$[x, y] := \{z \in M : x \le z \le y\}$$

the *order interval* between *x* and *y*. It is obvious that a subset *A* is order bounded if and only if it is contained in some order interval.

Definition 1.1.1 A real vector space E which is ordered by some order relation \leq is called a vector lattice if any two elements $x, y \in E$ have a least upper bound denoted by $x \lor y = \sup(x, y)$ and a greatest lower bound denoted by $x \land y = \inf(x, y)$ and the following properties are satisfied.

- (L1) $x \le y$ implies $x + z \le y + z$ for all $x, y, z \in E$,
- (L2) $0 \le x$ implies $0 \le tx$ for all $x \in E$ and $t \in \mathbb{R}_+$.

Let *E* be a vector lattice. We denote by $E_+ := \{x \in E : 0 \le x\}$ the *positive cone* of *E*. For $x \in E$ let

 $x^+ := x \lor 0, x^- := (-x) \lor 0$, and $|x| := x \lor (-x)$

be the *positive part*, the *negative part*, and the *absolute value* of *x*, respectively. Two elements $x, y \in E$ are called *orthogonal* (or *lattice disjoint*) (denoted by $x \perp y$) if $|x| \wedge |y| = 0$.

For a vector lattice E we have the following properties (cf. [26, Proposition II.1.4, Corollary II.1.1 and II.1.2] or [21, Theorem 1.1.1]).

Proposition 1.1.2 *For all* $x, y, z \in E$ *and* $a \in \mathbb{R}$ *the following assertions are satis-fied.*

- (i) $x + y = (x \lor y) + (x \land y),$ $x \lor y = -(-x) \land (-y),$ $(x \lor y) + z = (x + z) \lor (y + z),$ and $(x \land y) + z = (x + z) \land (y + z).$
- (*ii*) $x = x^+ x^-$.
- (*iii*) $|x| = x^+ + x^-$, |ax| = |a||x|, and $|x+y| \le |x| + |y|$.
- (iv) $x^+ \perp x^-$ and the decomposition of x into the difference of two orthogonal positive elements in unique.
- (v) $x \le y$ is equivalent to $x^+ \le y^+$ and $y^- \le x^-$.
- (vi) $x \perp y$ is equivalent to $|x| \lor |y| = |x| + |y|$. In this case we have |x+y| = |x| + |y|.
- (vii) $(x \lor y) \land z = (x \land z) \lor (y \land z)$ and $(x \land y) \lor z = (x \lor z) \land (y \lor z)$.
- (viii) For all $x, y, z \in E_+$ we have $(x + y) \land z \leq (x \land z) + (y \land z)$.
- (*ix*) $|x y| = (x \lor y) (x \land y)$, and $|x y| = |(x \lor z) (y \lor z)| + |(x \land z) (y \land z)|$.

A norm on a vector lattice E is called a *lattice norm* if

 $|x| \le |y|$ implies $||x|| \le ||y||$ for $x, y \in E$.

Definition 1.1.3 A Banach lattice is a real Banach space E endowed with an ordering \leq such that (E, \leq) is a vector lattice and the norm on E is a lattice norm.

For a Banach lattice E the following properties hold (cf. [26, Proposition II.5.2] or [21, Proposition 1.1.6]).

Proposition 1.1.4 Let E be a Banach lattice. Then,

- (a) the lattice operations are continuous,
- (b) the positive cone E_+ is closed, and
- (c) order intervals are closed and bounded.

Sublattices, solids, bands and ideals

A vector subspace F of a vector lattice E is a *vector sublattice* if and only if the following are satisfied.

- (1) $|x| \in F$ for all $x \in F$,
- (2) $x^+ \in F$ or $x^- \in F$ for all $x \in F$.

A subset *S* of a vector lattice *E* is called *solid* if $x \in S$, $|y| \leq |x|$ implies $y \in S$. Thus a norm on a vector lattice is a lattice norm if and only if its unit ball is solid. A solid linear subspace is called an *ideal*. Ideals are automatically vector sublattices since $|x \vee y| \leq |x| + |y|$. One can see that a subspace *I* of a Banach lattice *E* is an ideal if and only if

 $x \in I$ implies $|x| \in I$ and $0 \le y \le x \in I$ implies $y \in I$.

Consequently, a vector sublattice *F* is an ideal in *E* if $x \in F$ and $0 \le y \le x$ imply $y \in F$. A subspace $B \subseteq E$ is a *band* in *E* if *B* is an ideal in *E* and $\sup(M)$ is contained in *B* whenever *M* is contained in *B* and has an upper bound (supremum) in *E*. Since the notion of sublattice, ideal, band are invariant under the formation of arbitrary intersections, there exists, for any subset *M* of *E*, a uniquely determined smallest sublattice (ideal, band) of *E* containing *M*. This will be called the sublattice (ideal, band) generated by M.

Next, we summarize all properties which we will need in the sequel (cf. [21, Proposition 1.1.5, 1.2.3 and 1.2.5]).

Proposition 1.1.5 If E is a Banach lattice, then the following properties hold.

- (i) If I_1, I_2 are ideals of E, then $I_1 + I_2$ is an ideal and if furthermore I_1 and I_2 are closed, then $I_1 + I_2$ is also a closed ideal.
- (ii) The closure of every solid subset of E is solid.
- *(iii) The closure of every sublattice of E is a sublattice.*
- (iv) The closure of every ideal of E is an ideal.
- (v) Every band in E is closed.

(vi) For every non-empty subset $A \subset E$, the ideal generated by A is given by

$$I(A) = \bigcup \{ n[-y,y] : n \in \mathbb{N}, y = |x_1| \lor \ldots \lor |x_r|, x_1, \ldots, x_r \in A \}.$$

(vii) For every $x \in E_+$, the ideal generated by $\{x\}$ is

$$E_x = \bigcup \{ n[-x,x] : n \in \mathbb{N} \}.$$

Example 1.1.6 1. If $E = L^p(\Omega, \mu)$, $1 \le p < \infty$, where μ is σ -finite, then the closed ideals in E are characterized as follows: A subspace I of E is a closed ideal if and only if there exists a measurable subset Y of Ω such that

$$I = \{ \psi \in E : \psi(x) = 0 \ a.e. \ x \in Y \}.$$

2. If $E = C_0(X)$, where X is a locally compact topological space, then a subspace J of E is a closed ideal if and only if there is a closed subset A of X such that

 $J = \{ \varphi \in E : \varphi(x) = 0 \text{ for all } x \in A \}.$

Let *E* be a Banach lattice. If $E_e = E$ holds for some $e \in E_+$, then *e* is called an *order unit*. If $\overline{E_e} = E$, then $e \in E_+$ is called a *quasi interior point* of E_+ .

It follows that *e* is an order unit of *E* if and only if *e* is an interior point of E_+ . Quasi interior points of the positive cone exist, for example, in every separable Banach lattice.

- **Example 1.1.7** 1. If E = C(K), K compact, then the function constant $1I_K$ equal to 1 is an order unit. In fact, for every $f \in E$, there is $n \in \mathbb{N}$ such that $||f||_{\infty} \leq n$. Hence, $|f(s)| \leq n 1I_K(s)$ for all $s \in K$. This implies $f \in n[-1I_K, 1I_K]$.
 - **2.** If $E = L^p(\mu)$ with σ -finite measure μ and $1 \le p < \infty$, then the quasi interior points of E_+ coincide with the μ -a.e. strictly positive functions, while E_+ does not contain any interior point.

• Spaces with order continuous norm

If the norm on E satisfies

$$||x \lor y|| = \sup(||x||, ||y||)$$
 for $x, y \in E_+$

then E is called an *AM*-space. The above condition implies that the dual norm satisfies

$$||x^* + y^*|| = ||x^*|| + ||y^*||$$
 for $x^*, y^* \in E_+^*$.

Such spaces are called AL-spaces.

Definition 1.1.8 *The norm of a Banach lattice E is called order continuous if every monotone order bounded sequence of E is convergent.*

One can prove the following result (cf. [21, Theorem 2.4.2]).

Proposition 1.1.9 A Banach lattice E has order continuous norm if and only if every order interval of E is weakly compact.

As a consequence one obtains the following examples.

Example 1.1.10 Every reflexive Banach lattice and every L^1 -space has order continuous norm.

The Banach space dual E^* of a Banach lattice E is a Banach lattice with respect to the ordering \leq defined by

 $0 \le x^*$ if and only if $\langle x, x^* \rangle \ge 0$ for all $x \in E_+$.

A linear form $x^* \in E^*$ is called *strictly positive* if $\langle x, x^* \rangle > 0$ (notation: $x^* > 0$) for all $0 \leq x$ (means $0 \leq x$ and $x \neq 0$). The absolute value of $x^* \in E^*$ being given by

 $\langle x, |x^*| \rangle = \sup\{\langle y, x^* \rangle : |y| \le x\}, \quad x \in E_+.$

• Hahn-Banach's theorem

The following results are consequences of the Hahn-Banach theorem.

Proposition 1.1.11 Let *E* be a Banach lattice. Then $0 \le x$ is equivalent to $\langle x, x^* \rangle \ge 0$ for all $x^* \in E^*_+$.

Proposition 1.1.12 Let *E* be a Banach lattice. For each $0 \leq x \in E$ there exists $x^* \in E^*_+$ such that $||x^*|| = 1$ and $\langle x, x^* \rangle = ||x||$.

Proposition 1.1.13 In a Banach lattice E every weakly convergent increasing sequence (x_n) is norm-convergent.

Proof: Let $A := \{\sum_{i=1}^{n} a_i x_i : n \in \mathbb{N}, a_i \ge 0, a_1 + \ldots + a_n = 1\}$ be the convex hull of $\{x_n : n \in \mathbb{N}\}$. By the Hahn-Banach theorem, the norm-closure of *A* coincide with the weak closure. This implies that $x \in \overline{A}$, where $x := \text{weak} - \lim_{n \to \infty} x_n$. Thus, for $\varepsilon > 0$ there exist

$$y = a_1 x_1 + \ldots + a_n x_n \in A, a_1, \ldots, a_n \ge 0, a_1 + \ldots + a_n = 1,$$

such that $||y - x|| < \varepsilon$. Since $x_k \le x$, it follows that $||x - x_k|| \le ||x - y|| < \varepsilon$ for all $k \ge n$.

The following lemma will be useful in the proof of Proposition 2.5.3.

Lemma 1.1.14 Let *E* be a totally ordered (this means $x \in E \Rightarrow 0 \le x$ or $x \le 0$) real Banach lattice. Then dim $E \le 1$.

Proof: Let $e \in E_+$ and $x \in E$. We consider the closed subsets $C_+ := \{\alpha \in \mathbb{R} : \alpha e \ge x\}$ and $C_- := \{\alpha \in \mathbb{R} : \alpha e \le x\}$ of \mathbb{R} . It is obvious that $C_+ \cup C_- = \mathbb{R}$. Since \mathbb{R} is connected, it follows that $C_+ \cap C_- \neq \emptyset$. Hence there is $\alpha \in \mathbb{R}$ such that $x = \alpha e$. \Box

• Complexification of real Banach lattices (cf. [26, II.11])

It is often necessary to consider complex vector spaces (for instance in spectral theory). Therefore, we introduce the concept of a complex Banach lattice.

The complexification of a real Banach lattice *E* is the complex Banach space $E_{\mathbb{C}}$ whose elements are pairs $(x, y) \in E \times E$, with addition and scalar multiplication defined by $(x_0, y_0) + (x_1, y_1) := (x_0 + x_1, y_0 + y_1)$ and (a + ib)(x, y) := (ax - by, ay + bx), and norm

$$\|(x,y)\| := \|\sup_{0 \le \theta \le 2\pi} (x\sin\theta + y\cos\theta)\|.$$

One can show that the above supremum exists in *E* (cf. [26], p. 134). By identifying $(x, 0) \in E_{\mathbb{C}}$ with $x \in E$, *E* is isometrically isomorphic to a real linear subspace of $E_{\mathbb{C}}$. We write $0 \le x \in E_{\mathbb{C}}$ if and only if $x \in E_+$.

A complex Banach lattice is an ordered complex Banach space $(E_{\mathbb{C}}, \leq)$ that arises as the complexification of a real Banach lattice E. The underlying real Banach lattice E is called the real part of $E_{\mathbb{C}}$ and is uniquely determined as the closed linear span of all $x \in (E_{\mathbb{C}})_+$.

Instead of the notation (x, y) for elements of $E_{\mathbb{C}}$, we usually write x + iy. The complex conjugate of an element $z = x + iy \in E_{\mathbb{C}}$ is the element $\overline{z} = x - iy$. we use also the notation $\Re(z) := x$ for $z = x + iy \in E_{\mathbb{C}}$. The modulus $|\cdot|$ in *E* extends to $E_{\mathbb{C}}$ by

$$|x+iy| := \sup_{0 \le \theta \le 2\pi} (x \sin \theta + y \cos \theta).$$

All concepts first introduced for real Banach lattices have a natural extension to complex Banach lattices. A complex Banach lattice has order continuous norm if its real part has.

1.2 POSITIVE OPERATORS

This section is concerned with positive operators and their properties. Let E, F be two complex Banach lattices. A linear operator T from E into F is called *positive* (notation: $T \ge 0$) if $TE_+ \subset F_+$, which is equivalent to

$$|Tx| \le T|x|$$
 for all $x \in E$.

Every positive linear operator $T : E \to F$ is continuous (cf. [21, Proposition 1.3.5]). Furthermore,

$$||T|| = \sup\{||Tx|| : x \in E_+, ||x|| \le 1\}.$$

We denote by $\mathcal{L}(E,F)_+$ the set of all positive linear operators from *E* into *F*. For positive operators one can prove the following properties.

Proposition 1.2.1 Let $T \in \mathcal{L}(E, F)_+$. Then the following properties hold.

- (i) $(Tx)^+ \leq Tx^+$ and $(Tx)^- \leq Tx^-$ for all $x \in E_{\mathbb{R}}$.
- (ii) If $S \in \mathcal{L}(E, F)$ such that $0 \le S \le T$ (this means that $0 \le Sx \le Tx$ for all $x \in E_+$), then $||S|| \le ||T||$.

Let (A, D(A)) be a linear operator on a Banach lattice *E*. It is a *resolvent positive* operator if there is $\omega \in \mathbb{R}$ such that $(\omega, \infty) \subseteq \rho(A)$ and $0 \leq R(\lambda, A)$ for all $\lambda > \omega$. A C₀-semigroup on *E* is called positive if $0 \leq T(t)$ for all $t \geq 0$. Since

$$R(\lambda, A) = \int_0^\infty e^{\lambda t} T(t) dt \text{ for } \lambda > \omega_0(A) \text{ and}$$
$$T(t)x = \lim_{n \to \infty} (\frac{n}{t} R(\frac{n}{t}, A))^n x$$

for all $x \in E$ and $t \ge 0$ (cf. [2, Corollary 3.3.6]), it follows that a C₀-semigroup on a Banach lattice *E* is positive if and only if its generator is resolvent positive operator.

For resolvent positive operators one has the following result (see [2, Theorem 3.11.8]).

Theorem 1.2.2 Let *E* be a Banach lattice with order continuous norm. If *A* is a resolvent positive operator, then $\overline{D(A)}$ is an ideal in *E*.

Proof: Since *E* is the complexification of a real Banach lattice $E_{\mathbb{R}}$ and $R(\lambda, A)E_{\mathbb{R}} \subseteq E_{\mathbb{R}}, \lambda > \omega$, we have $\Re(z) \in \overline{D(A)}$ for $z \in \overline{D(A)}$. Remark that if *I* is a closed ideal of $E_{\mathbb{R}}$, then $I \oplus iI$ is a closed ideal of *E*. Therefore we can suppose, without loss of generality, that *E* is a real Banach lattice. Moreover, we assume s(A) < 0, by considering $A - \omega$ instead of *A* otherwise.

a) Let $0 \le y \le R(0,A)x, x \in E_+$. We claim that $y \in \overline{D(A)}$. In fact, for $\lambda > 0$ we have

$$0 \le \lambda R(\lambda, A) y \le \lambda R(\lambda, A) R(0, A) x = R(0, A) x - R(\lambda, A) x \le R(0, A) x.$$

From Proposition 1.1.3 it follows that [0, R(0, A)x] is weakly compact. Hence, there is $z \in E$ such that $z = \text{weak} - \lim_{\lambda \to \infty} \lambda R(\lambda, A)y$. In particular, $z \in \overline{D(A)}$ (because $\overline{D(A)} = \overline{D(A)}^{\text{weak}}$). Therefore,

weak
$$-\lim_{\lambda \to \infty} (R(0,A)y - R(\lambda,A)y) = \text{weak} - \lim_{\lambda \to \infty} \lambda R(\lambda,A)R(0,A)y$$

= $R(0,A)z$.

Since $0 \le R(\lambda, A)y \le \frac{1}{\lambda}R(0, A)x$, we have R(0, A)y = R(0, A)z and hence y = z.

b) Let $y \in \overline{D(A)}$. Then there is $(y_n) \subseteq D(A)$ such that $\lim_{n\to\infty} y_n = y$. Moreover, there exists $x_n \in E$ with $y_n = R(0,A)x_n$ and then $0 \le |y_n| \le R(0,A)|x_n|$. Now **a**) implies that $|y_n| \in \overline{D(A)}$ and hence $|y| \in \overline{D(A)}$.

c) Let $0 \le y \le x \in \overline{D(A)}$. Let $(x_n) \in D(A)$ with $\lim_{n\to\infty} x_n = x$. From b) we have $|x_n| \in \overline{D(A)}$. On the other hand,

$$y \wedge |x_n| \le |x_n| = |R(0,A)Ax_n| \le R(0,A)|Ax_n|$$

and **a**) implies that $y \land |x_n| \in \overline{D(A)}$. Hence,

$$y = \lim_{n \to \infty} y \land |x_n| \in \overline{D(A)}$$

Positive operators on C(K) with $T \amalg_K = \amalg_K$ are contraction operators (cf. [22, B.III. Lemma 2.1]).

Lemma 1.2.3 Suppose that K is compact and $T : C(K) \to C(K)$ is a linear operator satisfying $T \amalg_K = \amalg_K$. Then $0 \le T$ if and only if $||T|| \le 1$.

Proof: If $0 \le T$, then

$$|Tf| \le T|f| \le T(||f||_{\infty} \mathbb{1}_{K}) = ||f||_{\infty} \mathbb{1}_{K}.$$

Hence $||T|| \leq 1$.

To prove the converse, we first observe that

$$-\operatorname{II}_{K} \leq f \leq \operatorname{II}_{K} \Leftrightarrow \|f - ir \operatorname{II}_{K}\|_{\infty} \leq \rho_{r} := \sqrt{1 + r^{2}} \text{ for all } r \in \mathbb{R}.$$
(1.1)

Let $f \in C(K)$ with $0 \le f \le 21I_K$. Then $-1I_K \le f - 1I_K \le 1I_K$. By (1.1) we have $||f - 1I_K - ir 1I_K||_{\infty} \le \rho_r$ for all $r \in \mathbb{R}$. Since $T 1I_k = 1I_K$ and $||T|| \le 1$, $||Tf - 1I_K - ir 1I_K||_{\infty} \le \rho_r$ for all $r \in \mathbb{R}$. So by (1.1) we obtain $-1I_K \le Tf - 1I_K \le 1I_K$. This implies $0 \le Tf \le 21I_K$.

• Lattice homomorphism and signum operators

Let E, F be two Banach lattices and $T \in \mathcal{L}(E, F)$. It is called *lattice homomorphism* if one of the following equivalent conditions is satisfied (cf. [21, Proposition 1.3.11]).

- (a) $T(x \lor y) = Tx \lor Ty$ and $T(x \land y) = Tx \land Ty$ for all $x, y \in E$.
- (b) $|Tx| = T|x|, x \in E$.
- (c) $Tx^+ \wedge Tx^- = 0, x \in E$.

The following result, due to Kakutani, shows that for every $e \in E_+$ the generated ideal satisfies $E_e \cong C(K)$ for some compact *K*. Here, E_e is equipped with the norm $||x||_e := \inf\{\lambda > 0 : x \in \lambda[-e,e]\}, x \in E_e$ (cf. [21, Theorem 2.1.3]).

Theorem 1.2.4 Let $e \in E_+$ and take E_e the ideal generated by e. Let $B := \{x^* \in (E_e)^*_+ : \langle e, x^* \rangle = 1\}$ and K = ex(B) the set of all extreme points of B. Then K is $\sigma(E^*, E)$ -compact and the mapping $U_e : E_e \ni x \mapsto f_x \in C(K)$; $f_x(x^*) = \langle x, x^* \rangle, x^* \in K$, is an isometric lattice isomorphism.

If |h| is a quasi interior point of E_+ , then $E_{|h|}$ is a dense subspace of E isomorphic to a space C(K). Consider the lattice isomorphism $U_{|h|}$ from Kakutani's theorem. Let $\tilde{h} := U_{|h|}h$. Then, $|\tilde{h}| = U_{|h|}|h| = 1I_K$. Consider the operator

$$\widetilde{S}_0: C(K) \to C(K); f \mapsto (\operatorname{sign} \widetilde{h}) f := \frac{\widetilde{h}}{|\widetilde{h}|} f = \widetilde{h} f$$

and put $S_h := U_{|h|}^{-1} \widetilde{S}_0 U_{|h|}$. Then S_h is a linear mapping from $E_{|h|}$ into itself satisfying

- (i) $S_h \overline{h} = |h|$,
- (ii) $|S_h x| \le |x|$ for every $x \in E_{|h|}$,
- (iii) $S_h x = 0$ for every $x \in E_{|h|}$ orthogonal to h.

Since (ii) implies the continuity of S_h for the norm induced by E and $\overline{E_{|h|}} = E$, S_h can be uniquely extended to E. This extension will be also denoted by S_h and is called *signum operator* with respect to h.

We now give the following auxiliary result which we need in Section 2.5. See [22, B.III. Lemma 2.3] for a similar result.

Lemma 1.2.5 Let $T, R \in \mathcal{L}(E)$ and assume that |h| is a quasi interior point of E_+ . Suppose we have Rh = h, T|h| = |h|, and $|Rx| \leq T|x|$ for all $x \in E$. Then $T = S_h^{-1}RS_h$.

Proof: It follows from $|Rx| \leq T|x|, x \in E$, that *T* is a positive operator. Since $T|h| = |h|, E_{|h|}$ is *T*-and *R*-invariant. Consider the operators $\widetilde{T} := U_{|h|}TU_{|h|}^{-1}, \widetilde{R} := U_{|h|}RU_{|h|}^{-1}$, and put $\widetilde{h} := U_{|h|}h$. We then have

$$\widetilde{Rh} = \widetilde{h}, \widetilde{T} \amalg_{K} = \amalg_{K}, |\widetilde{R}f| \le \widetilde{T}|f| \text{ for all } f \in C(K).$$
(1.2)

Define $T_1 := M_{\tilde{h}}^{-1} \widetilde{R} M_{\tilde{h}}$, where $M_{\tilde{h}}$ is the multiplication operator by \tilde{h} on C(K). By (1.2) we have

$$T_{1} \Pi_{K} = \Pi_{K} \text{ and} |T_{1}f| = |M_{\tilde{h}}^{-1} \widetilde{R} M_{\tilde{h}}f| = |\widetilde{R} M_{\tilde{h}}f| \le \widetilde{T} |M_{\tilde{h}}f| = \widetilde{T} |f|$$
(1.3)

for all $f \in C(K)$. Hence $||T_1|| \le ||\widetilde{T}|| = ||\widetilde{T} \Pi_K||_{\infty} = 1$. So by Lemma 1.2.3, T_1 is a positive operator and (1.3) implies that $0 \le T_1 \le \widetilde{T}$. Therefore, $||\widetilde{T} - T_1|| =$ $||(\widetilde{T} - T_1) \Pi_K||_{\infty} = 0$. Since $|\widetilde{h}| = |U_{|h|}|h| = U_{|h|}|h| = \Pi_K$, it follows that $\widetilde{S}_0 = M_{\widetilde{h}}$. Thus, $S_h = U_{|h|}^{-1} M_{\widetilde{h}} U_{|h|}$ and $T_1 = \widetilde{T}$ implies that $T = S_h^{-1} RS_h$.