Introduzione. -

Sia M una varietà differenziabile di classe C^{∞} e di dimensione n. Si indichi con \mathcal{F} l'algebra delle funzioni reali differenziabili su M, con \mathcal{F} l' \mathcal{F} -modulo dei campi vettoriali differenziabili, con \mathcal{F}_s^r ($(r,s) \in \mathbb{N}^2$) l' \mathcal{F} -modulo dei campi tensoriali differenziabili di specie (r,s), con \mathcal{F}_s^r l'algebra dei campi tensoriali differenziabili e con \mathcal{F}_s^r

In un precedente lavoro [5] si è introdotta la definizione di pseudocon nessione lineare di specie (r,s) come generalizzazione della nozione di pseudoconnessione lineare: una pseudoconnessione Lineare r di specie (r,s) su M è definita da un '3-omomorfismo

$$D: T \rightarrow D_T$$
 di \sum_{s}^{r} in \sum_{s}^{r}

Indicato con \mathcal{J}_s^r il modulo degli \mathcal{J} -omomorfismi di \mathcal{J}_s^r in \mathcal{J}_s , per ogni $D\in\mathcal{J}_s^r$ si definisce un campo tensoriale A di specie (s+l,r), considerato come applicazione di $\mathcal{J}_s^r \times \mathcal{J}_s$ in \mathcal{J}_s , ponendo per ogni $T\in\mathcal{J}_s^r$ e per ogni $f\in\mathcal{J}_s$ $A(T,f)=D_Tf$

Alcune proprietà di tali pseudoconnessioni utili per il seguito sono le seguenti:

i) Per definire una pseudoconnessione lineare di specie (r,s) occorre e basta assegnare un campo tensoriale $A \in \mathcal{I}_r^{s+1}$ e un'applicazione \mathfrak{F} -lineare $B: T \to B_T$ di \mathfrak{F}_s^r nell' \mathfrak{F} -modulo degli R-endomorfismi di

 ${\mathcal H}$ tale che sia soddisfatta la seguente proprietà

$$B_{T}(fX) = f B_{T} X + A(T,f)X$$
 $\forall f \in \mathcal{F}, \ \forall X \in \mathcal{X}, \ \forall T \in \mathcal{J}_{S}^{r}$

ii) Se Γ è una pseudoconnessione lineare di specie (r,s) definita da D $\epsilon \int_{s}^{r}$ e se U è un aperto di M, esiste un'unica pseudoconnessione lineare di specie (r,s) Γ_{Π} su U tale che

$$(D_TK)_{|U} = (D_U)_{T_{|U}}(K_{|U})$$
 $\forall T \in \mathcal{J}_s^r, \forall K \in \mathcal{J}.$

Inoltre se (U,ϕ) con $\phi=(x^1,\ldots,x^n)$ è una carta locale di M, si chiamano componenti di P rispetto (U,ϕ) le funzioni $A_{i_1\ldots i_r}^{j_1\ldots j_sh}$ e $F_{i_1\ldots i_rk}^{j_1\ldots j_sh}$ definite nel modo seguente:

$$(D_{U})_{\substack{e^{j_1 \dots j_s} \\ i_1 \dots i_r}} \quad x^h = A_{i_1 \dots i_r}^{j_1 \dots j_s h} \quad , \quad (D_{U})_{\substack{e^{j_1 \dots j_s} \\ i_1 \dots i_r}} \quad e_k = r_{i_1 \dots i_r k}^{j_1 \dots j_s} \quad e_h$$

con
$$e_h = \frac{\partial}{\partial x^h}$$
, $e_{i_1...i_r}^{j_1...j_s} = e_{i_1} \otimes ... \otimes e_{i_r} \otimes e^{j_1} \otimes ... \otimes e^{s_r}$

In questa nota si espongono alcune proprietà delle pseudoconnessioni linea ri di specie (r,s) Precisamente nel §. I si introduce la nozione di pseudoderivata covariante, di pseudodifferenziale covariante e si definisce un campo tensoriale a carattere torsionale; nel § 2 vengono dimostrati alcuni teore mi di esistenza e di estensione; nel § 3 infine vengono studiati gli omomorfismi di \int_{s}^{r} in \int_{k}^{h} e se ne trovano alcune proprietà.

1. PSEUDODERIVATA E PSEUDODIFFERENZIALE COVARIANTE DI UN CAMPO TENSORIALE.

Sia Γ una pseudoconnessione lineare di specie (r,s) $(con\ r,s) \neq (0,0)$ su M definita da $D\in \mathcal{J}_s^r$, per ogni $T\in \mathcal{J}_s^r$ e per ogni $K\in \mathcal{J}_s$, D_TK si chiama pseudoderivata covariante di K rispetto a T. Per ogni $K\in \mathcal{J}_s^r$, considerato come applicazione \mathcal{J}_s -multilineare di \mathcal{L}_s $x \dots x \mathcal{L}_s$ (s' volte) in $\mathcal{J}_0^{r'}$, si chiama pseudodifferenziale covariante di K, e si indica K, il campo tensoriale di specie K-r',K-r') (considerato come applicazione K-multilineare di K-m

$$(DK)(X_1,...,X_s,T) = (D_TK)(X_1,...,X_s,).$$

Se $K \in \mathbb{Z}$ è somma di campi tensoriali di specie diverse, si chiama pseudodifferenziale covariante di K, e si indica DK, la somma degli pseudodifferenziali covarianti dei campi tensoriali delle varie specie.

Si prova che

<u>Proposizione 1.1.</u> Se $K \in \mathfrak{J}_s^r$, allora per ogni $X_1, \ldots X_s$, $\in \mathfrak{B}$ e per ogni $T \in \mathfrak{J}_s^r$, risulta:

$$(DK)(X_1,...,X_s,T)=D_T(K(X_1,...X_s,T))-\sum_{i=1}^{s}K(X_1,...,D_TX_i,...,X_s,T)$$

Se $K \in \mathbb{Z}$, $D(DK) = D^2K$ si chiama pseudodifferenziale covariante secondo di K, e in generale D^mK , pseudodifferenziale covariante m-esimo di K, è definito induttivamente da:

$$D^{m}K = D(D^{m-1}K) .$$

Se $A_{i_1...i_r}^{j_1...j_sh}$ e $r_{i_1...i_rk}^{j_1...j_sh}$ sono le componenti di Γ rispetto ad una carta locale (U,ϕ) di M con $\phi=(x^1,...,x^n)$ e se X^i sono le componenti di $X\in \mathscr{X}$ rispetto alla stessa carta locale, allora le componenti $X_{i_1...i_r}^{j_1...j_sh}$ di DX sono:

$$X_{i_1...i_r}^{j_1...j_sh} = X^{i_1}r_{i_1...i_r}^{j_1...j_sh} + \frac{\partial X^h}{\partial X^k} A_{i_1...i_r}^{j_1...j_sk}.$$

Infatti posto $e_{i_1...i_r}^{j_1...j_s} = e_{i_1} \otimes ... \otimes e_{i_r} \otimes e^{j_1} \otimes ... \otimes e^{j_s}$ risulta:

$$(D_{U})_{e_{i_{1}...i_{r}}^{j_{1}...j_{s}}}(X^{i}e_{i}) = X^{i}(D_{U})_{e_{i_{1}...i_{r}}^{j_{1}...j_{s}}} e_{i} + A(e_{i_{1}...i_{r}}^{j_{1}...j_{s}},X^{i}) e_{i} =$$

$$= X^{i} r_{i_{1} \dots i_{r} i}^{j_{1} \dots j_{s} h} \quad e_{h} + \frac{\partial X^{h}}{\partial_{x}^{k}} A_{i_{1} \dots i_{r}}^{j_{1} \dots j_{s} k} e_{h} \quad .$$

In generale se K $\in \mathbb{Z}_s^{r'}$, ha componenti $\underset{j_1 \dots j_s}{\overset{i_1 \dots i_r}{r'}}$ rispetto alla earta

locale (U, ϕ), le componenti $K_{k_1 \ldots k_r j_1 \ldots j_s}^{h_1 \ldots h_s i_1 \ldots i_r}$ di DK sono:

$$-\sum_{\beta=1}^{s'} K_{j_1...h...j_{s'}k_1...k_rj_{\beta}}^{i_1...i_r}$$

Se r è una pseudoconnessione lineare di specie (r,s) definita da $D \in \mathcal{J}_s^r, \text{ il campo tensoriale } A \in \mathcal{J}_r^{s+1} \text{ definito da } A(T,f) = D_T f \text{ può es}$ sere considerato come applicazione \mathcal{F} -lineare \mathcal{A} di \mathcal{J}_s^r in \mathcal{L} ta le che ad ogni $T \in \mathcal{J}_s^r$ associa $\mathcal{A}(T) \in \mathcal{L}$ definito per ogni $f \in \mathcal{F}$ da $\mathcal{A}(T) f = D_T f$.

Nel seguito con abuso di notazione si indicherà ${\mathcal A}$ con ${\mathsf A}$

Fissato $\omega \in \mathfrak{Z}_s^o$, si ponga per ogni $(X_0, X_1, \dots, X_r) \in \mathfrak{Z}^{r+1}$ $L_{\omega}(X_0, \dots, X_r) =$

$$=\sum_{\sigma\in\mathcal{Q}_r} \varepsilon(\sigma) \left\{ \left[A(X_{\sigma(\sigma)} \otimes \ldots \otimes X_{\sigma(r-1)} \otimes \omega), X_{\sigma(r)} \right] - \frac{1}{2} \sum_{i=0}^{r-1} (-1)^i A(X_{\sigma(\sigma)} \otimes \ldots \otimes X_{\sigma(r-1)} \otimes \omega) \right\} \right\}$$

$$\otimes [X_{\sigma(i)}, X_{\sigma(i+1)}] \otimes \ldots \otimes X_{\sigma(r)} \otimes \omega)$$

dove con $g_{\mathbf{r}}$ si è indicato l'insieme delle permutazioni di $\{0,\dots r\}$

Ebbene l'applicazione $S_{\omega}:(X_0,\ldots X_r)\to S_{\omega}(X_0,\ldots X_r)$ di \mathbf{Z}^{r+1} in \mathbf{Z}^{c} così definita:

$$S_{\omega}(X_{0},...X_{r}) = \frac{1}{2} \left(\sum_{\sigma \in \mathcal{G}_{r}} \varepsilon(\sigma) D_{X_{\sigma(\sigma)}} \otimes ... \otimes X_{\sigma(r-1)} \otimes \omega X_{\sigma(r)} - L_{\omega}(X_{0},...,X_{r}) \right)$$

è un campo tensoriale di specie (1,r+1) che viene chiamato ω -torscone di F.

Si osservi che per r = 1, s = 0, $\omega = l_3$ (funzione di costante valore l) si ottiene l'ordinario campo tensoriale di torsione di una pseudocon-

nessione lineare.

2 ESISTENZA ED ESTENSIONE DI PSEUDOCONNESSIONI LINEARI DI SPECIE (r,s).

Si proverà la seguente:

Proposizione 2.1.- Se M è una varietà paracompatta, per ogni $A \in \mathcal{T}_{t}^{s+1}$ esiste una pseudoconnessione lineare Γ di specie (r,s) su M, tale che, indicata con D la pseudodifferenziazione covariante rispetto a Γ , \mathcal{X} campo tensoriale $(T,f) \in \mathcal{T}_{s}^{r} \times \mathcal{T} \to D_{T} f \in \mathcal{T}$ coincide con A.

<u>Dimostrazione</u>. Essendo M paracompatta, esiste una famiglia di carte ammissibili $(U_i, \phi_i)_{i \in I}$ tale che

- a) $(U_i)_{i \in I}$ è un ricoprimento di M localmente finito;
- b) $\forall i \in I$ \overline{U}_i è compatto;
- c) esiste una partizione dell'unità $(f_i)_{i \in I}$ subordinata al ricoprimento $(U_i)_{i \in I}$

Per ogni $i \in I$ sia Γ_i una pseudoconnessione lineare di specie (r,s) su U_i tale che, indicata con D_i la pseudodifferenziazione covariante rispetto a Γ_i , il campo tensoriale $A_i \in \mathcal{T}_r^{s+1}(U_i)$ definito da

$$A_{i}(T',g') = D_{iT'}g'$$
 $\forall g' \in \mathcal{J}(U_{i}), \forall T' \in \mathcal{J}_{s}^{r}(U_{i})$

coincida con $A_{|U_i}$

Per ogni i ϵ I si indichi con D' l'elemento di \mathcal{L}_s^r definito così

$$\forall T \in \mathcal{J}_{s}^{r}, \forall K \in \mathcal{J}, \forall p \in M : (D_{iT}^{r}K)_{p} = \begin{cases} 0 & \text{se } p \notin U_{i} \\ f_{i}(p)(D_{iT}^{r}U_{i}^{K}|U_{i}^{r})_{p} & \text{se } p \in U_{i} \end{cases}$$

Sia ora D l'elemento di \mathcal{J}_{s}^{r} definito da $D_{T}K = \sum_{i \in T} D_{i}^{i} T^{K} \qquad \forall T \in \mathcal{J}_{s}^{r}, \ \forall K \in \mathcal{J}$

Se p è un qualunque punto di M, si indicherà con J la parte (finita) di I tale che per ogni i ϵ J sia p ϵ U e per ogni i ϵ J sia p ϵ U $_i$.

Allora per ogni g $\in \mathcal{F}$ e per ogni T $\in \mathcal{T}_s^r$ risulta:

$$(D_Tg)_p = \sum_{i \in J} (D'_iTg)_p = \sum_{i \in J} f_i(p)(D_iT_{|U_i} g_{|U_i})_p =$$

$$= \underset{i \in J}{\sum} f_{i}(p) \left(A_{i}(T_{|U_{i}}, g_{|U_{i}}) \right)_{p} = \left(A(T,g) \right)_{p} \underset{i \in J}{\sum} f_{i}(p) = \left(A(T,g) \right)_{p}.$$

Ricordando com'era stato definito l'omomorfismo $\phi: \mathcal{L}_s^r \to \mathcal{J}_c^{s+1}$. (cfr [5] pag. 3), la precedente proposizione è equivalente alla seguente

Proposizione 2.2. - Se M è una varietà paracompatta, l'immomorfisme

$$\phi = \int_{s}^{r} \rightarrow \mathcal{T}_{r}^{s+1} \quad \text{`e surgettivo}.$$

Si proverà ora la seguente:

Proposizione 2.3.- Sia V una sottovarietà aperta di M e sia

una pseudoconnessione lineare di specie (r,s) su V, allora per ogni

peV isiste un interno aperto U di p (nolusi in V ed esiste una pseudo

unnessione lineare Γ di specie (r,s) su M, tali che le pseudoconnessioni indotte su U da Γ e da Γ^V coincidono.

<u>Dimostrazione</u>. - Per ogni p ϵ V $\tilde{\epsilon}$ noto che esistono f ϵ \mathfrak{F} e un interno aperto U di p incluso in V, tali che

$$f_{1U} = 1$$
 e supp(f) $c V$.

Indicata con D^V la pseudoconnessione covariante rispetto a T^V , sia D l'elemento di \mathcal{J}_s^r definito come segue:

$$\forall T \in \mathcal{J}_{s}^{r}, \ \forall K \in \mathcal{J}, \ \forall q \in M$$

$$(D_{T}^{K})_{q} = \begin{cases} 0 & \text{se } q \notin V \\ f(q)(D_{T|V}^{V} K_{|V})_{q} & \text{se } q \in V \end{cases}$$

E' immediato allora verificare che la pseudoconnessione lineare di specie (r,s) definita da D verifica l'asserto.

Si prova facilmente la seguente:

Proposizione 24 - Sia ∇ la differenziazione covariante rispetto aci una connessione lineare su M; per ogni $A \in \mathcal{T}_r^{s+1}$ e per ogni $H \in \mathcal{T}_{r+1}^{s+1}$ sua B l'operatore definito da:

$$B_T X = \nabla_{A(T)} X + H(T,X)$$
 $\forall X \in \mathcal{Z}, \ \forall T \in \mathcal{T}_s^r$.

Aklora la coppia $\{A,B\}$ definisce una pseudoconnessione lineare $\{A,B\}$ specie $\{A,B\}$ su $\{A,B\}$ definisce una pseudoconnessione lineare $\{A,B\}$ specie $\{A,B\}$ su $\{A,B\}$ definisce una pseudoconnessione lineare $\{A,B\}$ specie $\{A,B\}$ definisce $\{A,B\}$ definition $\{A,B\}$

$$\mathcal{J}_{r+1}^{s+1} \otimes \mathcal{J}_{r+1}^{s+1} \quad \text{su} \quad \mathcal{I}_{r+1}^{r}$$

Si osservi che la proposizione 2.1 segue immediatamente dalla proposizione 2.4 sfruttando il noto teorema sull'esistenza delle connessioni lineari su

varietà paracompatte.

3. OMOMORFISMI DI \mathcal{J}_s^r IN \mathcal{J}_k^h , SIMMETRIZZAZIONE E ALTERNAZIONE DI \mathcal{J}_s^r .

Sia $\Psi: \mathcal{T}_k^h \to \mathcal{T}_s^r$ un'applicazione \mathcal{F} -lineare e per ogni $D \in \mathcal{J}_s^r$ sia $\bar{D}: \mathcal{T}_k^h \to \mathcal{D}$ l'operatore definito da:

$$\bar{D}_K = D_{\Psi(K)}$$
 $\forall K \in \mathcal{I}_k^h$.

E' immediato verificare che $\bar{\mathbb{D}}$ e \mathcal{J}_k^h e che l'applicazione $\bar{\mathbb{Y}}: \mathbb{D} \to \bar{\mathbb{D}}$ dell' \mathcal{J} -modulo \mathcal{J}_s^r nell' \mathcal{J} -modulo \mathcal{J}_k^h è un omomorfismo; inoltre se $\bar{\mathbb{Y}}$ è un isomorfismo, anche $\bar{\mathbb{Y}}$ è un isomorfismo. Si osservi che affinché $\bar{\mathbb{Y}}$ sia un isomorfismo è necessario che sia h+k=r+s ed è noto che se esiste un isomorfismo di \mathcal{J}_1^o in \mathcal{J}_0^1 , allora per ogni quaterna (h,k,r,s) di interi non negativi tali che h+k=r+s>0 esiste un isomorfismo di \mathcal{J}_k^h su \mathcal{J}_s^r .

Segue allora che:

Proposizione 3.1.- Se gli \mathcal{F} -moduli \mathcal{F}_0^1 e \mathcal{F}_1^0 sono isomorfi, allora per ogni quaterna (h,k,r,s) di interi non negativi tali che h+k=r+s>0, gli \mathcal{F} -moduli \mathcal{F}_k^h e \mathcal{F}_s^r sono isomorfi.

In particolare si ha:

Proposizione 3.2.- Se la varietà M è paracompatta, allora per ogni quaterna (h,k,r,s) di interi non negativi tali che h+k=r+s>0, gli g-moduli g-

Indicato con \mathcal{G}_n $(n \ge 1)$ il gruppo delle permutazioni di $\{1,\ldots,n\}$, è noto che per ogni $(\rho,\sigma) \in \mathcal{G}_r \times \mathcal{G}_s$ esiste un unico automorfismo ψ^{σ}_{ρ} di \mathfrak{T}^r_s tale che per ogni $X_1,\ldots,X_r \in \mathfrak{X}^c$ e per ogni $\omega^1,\ldots,\omega^s \in \mathfrak{T}^c_1$:

$$\Psi^{\sigma}_{\rho} \left(\mathsf{X}_{1} \otimes \ldots \otimes \mathsf{X}_{r} \otimes \omega^{1} \otimes \ldots \otimes \omega^{s} \right) \ = \ \mathsf{X}_{\rho(1)} \otimes \ldots \otimes \mathsf{X}_{\rho(r)} \otimes \omega^{\sigma(1)} \otimes \ldots \otimes \omega^{\sigma(s)} \, ... \otimes \omega^{\sigma(s)} \,$$

Posto $\tau = (\rho, \sigma) \in \mathcal{G}_r \times \mathcal{G}_s$ l'applicazione $\chi_{\tau} (= \tilde{\psi}^{\sigma}_{\rho})$ che ad ogni $D \in \mathcal{J}_s^r$ associa $\chi_{\tau}(D) \in \mathcal{J}_s^r$ e definito da

$$\chi_{\tau}(D)_{T} = D_{\Psi_{\rho}^{\sigma}}(T)$$

è, per quanto osservato all'inizio di questo paragrafo, un automorfismo di \mathcal{L}_s^r Posto $\chi_{\tau}(D) = {}^{\tau}D$ si dà la seguente

Definizione 3.3.- Se Γ è una pseudoconnessione lineare di specie (r,s) definita da $D \in \mathcal{J}^r$, allora per ogni $\tau = (\rho,\sigma) \in \mathcal{J}^r \times \mathcal{J}^s$, la pseudoconnessione lineare di specie (r,s) definita da TD si chiama associata a tramite τ e si indica con $^T\Gamma$.

E' di verifica immediata la seguente

di una pseudoconnessione lineare Γ di specie (r,s) rispetto ad una carta locale (U,ϕ) , per ogni $\tau=(\rho,\sigma)\in C_{r}\times C_{r}$ le componenti

$$\tau_{A_{i_{1}...i_{r}}^{j_{1}...j_{s}^{h}}}^{j_{1}...j_{s}^{h}} = A_{i_{\rho(1)}...i_{\rho(r)}}^{j_{\sigma(1)}...j_{\sigma(s)}^{h}}$$

$$\tau_{r_{i_{1}...i_{r}^{k}}}^{j_{1}...j_{s}^{h}} = r^{j}_{\sigma(1)}...j_{\sigma(s)}^{h}$$

$$i_{\rho(1)}...i_{\rho(r)}^{k}$$

 $\underline{\text{Definizione}} \text{ 3.5.- L'endomorfismo } \chi \text{ di } \mathcal{J}_s^r \text{ definito da}$

$$x = \frac{1}{r!s!} \sum_{\tau \in C \times C} x_{\tau}$$

si chiama summetruzzazione di \hat{J}_s^r . Per ogni D $\epsilon \hat{J}_s^r$, la pseudoconnessione lineare di specie (r,s) definita da $\chi(D)$ si chiama simmetruzzata della pseudoconnessione definita da D.

Dalla definizione precedente segue che se r è una pseudoconnessione determinata da $D \in \mathcal{J}_s^r$, allora la pseudoconnessione simmetrizzata di è determinata da

$$\bar{D} = \frac{1}{r!s!} \qquad \frac{1}{\tau \in \hat{G} \times \hat{G} s} D.$$

di sono date da:

sono le componenti di rispetto ad una carta ammissibile (U,ϕ) , le componenti $\bar{A}_{i_1\ldots i_r}^{j_1\ldots j_sh}$ e $\bar{a}_{i_1\ldots i_r}^{j_1\ldots j_sh}$ della pseudoconnessione simmetrizzata

$$\bar{A}_{i_1...i_r}^{j_1...j_sh} = \frac{1}{r!s!} \underbrace{(\bar{\rho}, \bar{\sigma}) \in G_x \in A}_{A_r}^{j_{\sigma(1)}...j_{\sigma(s)}h}$$

$$\bar{\Gamma}_{i_{1}...i_{r}}^{j_{1}...j_{s}h} = \frac{1}{r!s!} \frac{\Gamma}{(\rho,\sigma)\epsilon \mathcal{E}_{r}^{k} \mathcal{E}_{s}^{c}} \Gamma_{i_{\rho(1)}...i_{\rho(r)}^{k}}^{j_{\sigma(1)}...j_{\sigma(s)}^{h}}$$

<u>Definizione</u> 3.6.- Una pseudoconnessione lineare di specie (r,s) si dice a derivata covariante simmetrica se coincide con la sua simmetrizzata.

Segue immediatamente che:

Proposizione 3.7.- Una pseudoconnessione lineare Γ di specie (r,s) à a derivata covariante simmetrica se e solo se per ogni $\tau \in \mathcal{G}_r \times \mathcal{G}_s$ Γ coincide con ${}^{\mathsf{T}}\Gamma$.

Inoltre è facile verificare che:

Proposizione 3.8.- Se X è la simmetrizzazione di l_s^r risulta

$$\chi \circ \chi = \chi$$

Indicato con \int_{s}^{r} il sottoinsieme di \int_{s}^{r} formato dagli elementi che definiscono le pseudoconnessioni a derivata covariante simmetrica, risulta $\chi(\int_{s}^{r}) = \int_{s}^{r}$ e quindi:

Proposizione 3.9.- \int_{s}^{r} è un sottomodulo di \int_{s}^{r} .

Posto per ogni $\tau = (\rho, \sigma) \in \underset{r}{\times} \underset{s}{\times}$

$$\varepsilon(\tau) = \varepsilon(\rho) \cdot \varepsilon(\sigma)$$

dove per ogni $\rho \in \mathcal{G}_{\mathbf{r}}$ $(\sigma \in \mathcal{G}_{\mathbf{s}})$ si è posto $\varepsilon(\rho) = \pm 1$ $(\varepsilon(\sigma) = \pm 1)$ a seconda che la permutazione ρ (σ) sia di classe pari o dispari, usando le notazioni precedenti si dà la seguente

Definizione 3.10.- L'endomorfismo \odot di \mathcal{L}_s^r definito da

$$\Theta = \frac{1}{r!s!} \sum_{\tau \in G \times G} \varepsilon(\tau) \chi_{\tau}$$

si chiama alternazione di \mathcal{L}_s^r . Per ogni $D \in \mathcal{L}_s^r$ la pseudoconnessione linea re definita da $\Theta(D)$ si chiama pseudoconnessione alternata della pseudoconnessione definita da D.

E' immediato allora che la pseudoconnessione alternata di Γ determinata da D ϵJ^r , è determinata da:

$$\hat{D} = \frac{1}{r!s!} \sum_{\substack{\tau \in C \times Q \\ Xr \ Ss}} \varepsilon(\tau)^{\tau} D$$

e che se $A_{i_1...i_r}^{j_1...j_sh}$ e $\Gamma_{i_1...i_rk}^{j_1...j_sh}$ sono le componenti di Γ rispetto ad una carta ammissibile (U, ϕ), le componenti $A_{i_1...i_r}^{j_1...j_sh}$ e $\Gamma_{i_1...i_rk}^{j_1...j_sh}$

della pseudoconnessione alternata di r sono:

$$\begin{array}{lll}
 A_{i_{1}...i_{r}}^{j_{1}...j_{s}h} &= & \frac{1}{r!s!} \frac{\sum_{(\rho,\sigma) \in \mathcal{G} \times \mathcal{G}} \varepsilon(\rho) \varepsilon(\sigma)} \left(A_{i_{\rho(1)}...i_{\rho(r)}}^{j_{\sigma(1)}...j_{\sigma(s)}h} \right)
\end{array}$$

<u>Definizione</u> 3.11.- Una pseudoconnessione lineare di specie (r,s) si dice a derivata covariante alternante se coincide con la sua alternata.

Sono di semplice verifica le seguenti:

Proposizione 3.12. - Una pseudoconnessione lineare Γ di specie (r,s) determinata da D é a derivata covariante alternante se e solo se per ogni $\tau \in \mathcal{G}_r \times \mathcal{G}_s$ $D = \varepsilon(\tau)^T D$.

Proposizione 3.13. - Se Θ è alternazione di \mathcal{J}_s^r risulta

Proposizione 3.14.- Se x e θ sono rispettivamente la simmetrizzazione e l'alternazione di $\hat{\mathcal{J}}_s^r$ risulta:

$$x \circ \Theta = \Theta \circ \chi = 0$$

Indicato con $\widetilde{\mathcal{J}}_s^r$ il sottoinsieme di $\widetilde{\mathcal{J}}_s^r$ formato dagli elementi che definiscono le pseudoconnessioni a derivata covariante alternante, risulta $\Theta(\widetilde{\mathcal{J}}_s^r) = \widetilde{\mathcal{J}}_s^r$ e quindi $\widetilde{\mathcal{J}}_s^r$ è un sottomodulo di $\widetilde{\mathcal{J}}_s^r$.

Accettato per la pubblicazione su parere favorevole del Prof.C. Di Comite

BIBLIOGRAFIA

	C. Di Comite,	Pseudoconnessioni tensoriali di specie (r,s) di ordine n, Ann.Mat.Pura ed Appl.,(4),79 (1968).
[2]	C. Di Comite,	Pseudoconnessioni lineari su una varietà differenziabile di classe C^{∞} . Ann.Mat. Pura Appl. (4),83, (1969).
[3]	S.Helgason,	Differential geometry and symmetric spaces, Academic Press, 1962.
[4]	S.Kobayashi-K.Nomizu	Foundation of differential geometry, Interscience Publisher, 1963.
[5]	S. Rizzo	Pseudoconnessioni lineari di specie (r,s) B.U.M.I. (5), 14-B,(1977).