CAPITOLO I - BANDE

1. Bande. Bande particolari. Prime proprietà delle bande. Esempio di Banda.

Un <u>semigruppo idempotente</u> (o <u>banda</u>) è un insieme $S \neq \emptyset$ chiuso rispetto ad una moltiplicazione associativa tale che per ogni elemento a di S risulti: $a^2 = a$.

Un <u>semigruppo</u> si dice <u>anticommutativo</u> quando nessuna coppia di suoi elementi commuta, cioé presi comunque a,b ϵ S con a \neq b, risulta ab \neq ba.

per ogni a,b appartenenti ad S.

I semigruppi rettangolari, zero-sinistri, zero-destri sono tutti idempotenti Infatti sia S un semigruppo rettangolare, allora preso aeS ri risulta $a^2 = a^2$ a $a^2 = a$ a a^3 a = a.

Sia ora S un semigruppo zero-sinistro (destro), allora preso a ϵ S: a a = a

Un semigruppo zero-sinistro (destro) è rettangolare. Infatti per ipotesi $\forall a,b \in S : ab = a(ba = a)$, allora:

aba = (ab)a = a a = a (aba = a(ba) = aa=a), in quanto vale l'idempotenza.

Sia data una banda S, per ogni a ϵ S definiamo due insiemi S $_a$, T $_d$ nel seguente modo:

$$S_a = \{x \in S / x = ax\}$$
, $T_a = \{x \in S / x = xa\}$ ovvero $ax = x \iff x \in S_a$, $xa = x \iff x \in T_a$.

In $S_a(\bar{a})$ ci sono tutti e soli gli elementi di S che hanno a come un<u>i</u> tà sinistra (destra).

Tali insiemi sono certamente non vuoti perché almeno a vi appartiene; inoltre vale la seguente proprietà:

$$S_a = S_b$$
, $T_a = T_b \implies a = b$

Infatti:

$$S_a = S_b$$
, $a \in S_a$ $\Rightarrow a = b a$ $\Rightarrow a = b$
 $T_a = T_b$, $b \in T_b$ $\Rightarrow b = b a$

cosicché ogni elemento a eS viene caratterizzato dai due insiemi.

<u>Lemma 1.1</u>. - Sia S una banda. S è anticommutativa se e solo se per ogni terna a,b,c ϵ S: abc = ac.

Dimostrazione.-

Proviamo prima che la condizione è sufficiente, cioé supposto che $\forall a,b,c \in S$: abc = ac vogliamo provare che S è anticommutativa Presi dunque $a,b \in S$ con $a \neq b$ risulta:

$$(a b)(b a) = a(bb)a = a b a = a a = a$$

 $(b a)(a b) = b(aa)b = b a b = b$

dove a b a = a a e b a b = b b per l'ipotesi fatta.

Ora se fosse a b = b a risulterebbe (a b) (b a) = (b a) (a b) cioé a = b mentre \tilde{e} a \neq b, se ne conclude che a $b \neq$ b a.

Viceversa supposta S anticommutativa vogliamo provare che ¥a,b,c e S: abc = ac.

Da a(axa) = (axa)a, in quanto entrambi uguali ad axa, segue che a = axa per ogni xeS. Infatti se fosse $a \neq axa$, per l'anticommutività di S, si avrebbe che anche $a(axa) \neq (axa)a$.

Allora presi a,b,c ∈ S

$$a b c = a b(c a c) = [a(b c)a] c = ac$$

$$\begin{cases}
per x = bc : \\
a(bc) a = a
\end{cases}$$

Lemma 1.2.- Una banda S è rettangolare se e solo se a b c = a c $\forall a,b,c \in S$ (cioé sse S è anticommutativa).

Dimostrazione. -

Condizione sufficiente:

Se per una banda S si ha a b c = a c $\forall a,b,c \in S$, allora a b a = a a - a quindi S è rettangolare.

Condizione necessaria:

Supponiamo che S sia una banda rettangolare, allora $\forall a,b,c \in S$: a(bc)a = a, da cui abc = ab(cac) = (a(bc)a)c = ac.

Lemma 1.3.- In una banda rettangolare S si ha: $S_a = S_{ab}$ e $T_b = T_{ab}$ Va,b \in S.

Dimostrazione. -

$$S_a = \{x \in S \mid x = ax, T_b = \{x \in S \mid x = xb\}\}$$

Dal Lemma 1.1. risulta ax = abx per cui $ax = x \iff abx = x \forall x \in S$, ne segue che $S_a = S_{ab}$.

Lemma 1.4. - In una banda commutativa S:

$$S_a = T_a$$
 e $S_{ab} = S_a \cap S_b$ $\forall a,b \in S.$

Dimostrazione. -

Poiché S è commutativa ax = xa per ogni x \in S, da cui $S_a = T_a$. Proviamo ora che $S_a \cap S_b = S_{ab}$.

Sia $x \in S_a \cap S_b$ allora $x = ax \in x = bx$, da cui

$$abx = a(bx) = ax = x$$
, $cioé x \in S_{ab}$.

Sia ora $x \in S_{ab}$ allora abx = x, ne segue che

$$ax = a(abx) = a^2bx = abx = x$$

 $bx = b(abx) = (ba)bx = abbx = abx = x$

per cui
$$x \in S_a \cap S_b$$
. In conclusione $S_a \cap S_b = S_{ab}$.

Dal lemma precedente si deduce che ogni elemento di una banda commutativa è caratterizzato da un solo insieme e che la moltiplicazione (tra elementi) è rappresentata dall'intersezione tra i relativi insiemi.

Definiamo ora in una banda S due relazioni R e L come segue:

$$a R b \rightleftharpoons > ab = b e ba = a$$
 $\forall a,b \in S$

$$a L b \rightleftharpoons > ab = a e ba = b$$

Lemma 1.5.- In una banda S risulta:

1)
$$aRb < \longrightarrow S_a = S_b$$

¥a,beS.

2) alb
$$\langle = \rangle$$
 $T_a = T_b$

Dimostrazione. -

1) Proviamo che la condizione è necessaria.

Presi a, D € S

$$aRb < = > ab = b$$
 e $ba = a$

Consideriamo

$$x \in S_a < = > ax = x$$
, ma $a = ba$ da cui $(ba)x = x$ inoltre $(ba)x = b(ax) = bx$ quindi $x = bx$, cioé $x \in S_b$ $(S_a \subseteq S_b)$

Ancora

$$x \in S_b$$
 $\Rightarrow bx = x$, ma $b = ab$ da cui $(ab)x = x$ ed essendo $(ab)x = a(bx) = ax$ si ha $ax = x$ cioé $x \in S_a$ $(S_b = S_a)$ E così si è provato che $S_a = S_b$.

Viceversa siano $S_a = S_b$, vogliamo provare che ab = b e ba = a. Infatti da a $\in S_a$, $S_a = S_b$ segue che a $\in S_b$, cioé ba = a e da b $\in S_b$, $S_b = S_a$ segue che b $\in S_a$, cioé ab = b.

Analogamente si prova la 2).

Le relazioni <u>R</u> <u>e</u> <u>L</u> sono <u>relazioni di equivalenza</u>, lo si vede immediatamente applicando il lemma 1.5. Infatti

aRa in quanto
$$S_a = S_a$$

aRb \Longrightarrow bRa in quanto $S_a = S_b$ \Longrightarrow $S_b = S_a$

aRb, bRc \Longrightarrow aRc perché $S_a = S_b$, $S_b = S_c$ \Longrightarrow $S_a = S_c$

Analogamente per L.

Lemma 1.6. -

Dimostrazione. -

1) Dobbiamo provare che
$$(ca)(cb) = cb$$
 e $(cb)(ca) = ca$

Infatti dall'ipotesi ab = b e ba = a quindi cab = cb
e cba = ca. Allora

$$(ca)(cb) = (ca)(cab) = (ca)(ca)b = cab = cb$$

$$(cb)(ca) = cb(cba) = (cb)(cb)a = cba = ca$$
 come volevamo.

2) Dobbiamo provare che
$$(ac)(bc) = ac$$
 e $(bc)(ac) = bc$

Dall'ipotesi ab = a e ba = b quindi abc = ac e bac = bc.

Allora

$$(ac)(bc) = (abc)(ac) = a(bc)^2 = abc = ac$$

$$(bc)(ac) = (bac)ac = b(ac)^2 = bac = bc$$
 come volevamo.

Definiamo ora in S un'altra <u>relazione</u> P come segue:

a,beS
$$aPb < ---> aba = a e bab = b$$
.

Dimostrazione. -

$$e a(ca) = a$$
 cioé aPc.

Lemma 1.8 -

Dimostrazione. -

Dobbiamo provare che aba = a , bab = b
$$(ca)(cb)(ca) = ca, (cb)(ca)(cb) = cb$$

$$(ca)(bc)(ac) = ac, (bc)(ac)(bc) = bc$$

nell'ipotesi che ab = a e ba = b oppure ab = b e ba = a

Infatti sia alb allora aba = $(ab)a = a^2 = a$, $bab = (ba)b = b^2 = b$,

inoltre per il Lemma 1.6 si ha che acLbc cioé

ac (bc) = ac e (bc)(ac) = bc Ne segue che

$$(ca)(cb)(ca) = c[(ac)(bc)]a = c(ac) a = (ca)^2 = ca$$

 $(cb)(ca)(cb) = c[(bc)(ac)]b = c(bc)b = (cb)^2 = cb$
 $(ac)(bc)[(ac) = (ac)^2 = ac$
 $[(bc)(ac)](bc) = (bc)^2 = bc$

Sia invece aRb allora aba = (ab)a = ba = a e bab = (ba)b = ab = b
inoltre per il lemma l.6: caRcb cioé

$$(ca)(cb) = cb$$
 e $(cb)(ca) = ca$. Ne segue che

$$(ca)(cb)(ca) = (cb)(ca) = ca$$

 $(cb)(ca)(cb) = (ca)(cb) = cb$
 $ac(bc)ac = a[(cb)(ca)]c = a(ca)c = (ac)^2 = ac$
 $bc(ac)bc = b[(ca)(cb)]c = b(cb)c = (bc)^2 = bc$

Lemma 1.9 -

aPb === > aRab e bLab e bRba e aLba .

Dimostrazione. -

Per ipotesi è aba = a e bab = b, allora

$$a(ab) = a^{2}b = ab$$
 e $(ab)a = aba = a$ $quindi aRab;$ $b(ab) = bab = b$ e $(ab)b = ab^{2} = ab$ $quindi bLab,$ $b(ba) = b^{2}a = ba$ e $(ba)b = bab = b$ $quindi bRba;$ $a(ba) = aba = a$ e $(ba)a = ba^{2} = ba$ $quindi aLba$

La relazione P è una relazione d'equivalenza, infatti vale la proprietà riflessiva in quanto aaa = a (aPa). vale la proprietà simmetrica in quanto aba = a e bab = b ---> bab = b e aba = a (aPb ---> bPa

La proprietà transitiva sarà provata nel seguente

Lemma 1.10.-

 $aPb,bPc \implies aPc$

Dimostrazione. -

Se aPb e bPc dal lemma 1.9 segue che bRba,bRbc, bLab,bLcb

e poiché R ed L sono relazioni d'equivalenza esse sono simmetriche e transitive quindi bRba == > baRb ; baRb, bRbc == > baRbc
bLab == > abLb ; abLb, bLcb == > abLcb .

In conclusione ablcb e baRbc, per il lemma 1.6 risulta: abalcba, cbaRcbc, ma per ipotesi aba = a, cbc = c quindi alcba, cbaRc e per il lemma 1.7 si ha aPc, come volevamo.

Lemma 1.11.-(Compatibilità a sinistra e a destra della P).

aPb ⇒ caPcb e acPbc.

Dimostrazione. -

Per il lemma 1.9 : aPb \Longrightarrow aRab e bLab e per il lemma 1.8 ; caPcab e cbPcab, acPabc e bcPabc, e per la simmetria di P: cabPcb e abcPcb, da cui applicando la transitività della P: caPcb e acPbc, come volevamo.

Lemma 1.12. -

Sia Q una relazione d'equivalenza definente un omomorfismo di una banda S t.c. $\forall a,b \in S$: abQba.

Allora aPb \Longrightarrow aQb.

Dimostrazione. -

 $aPb \implies a = aba = bab, da cui a = (ab)(ba) = b = (ba)(ab).$

Ora, essendo abQba per ogni a,b e S, si avrà anche per ab e ba, cioé (ab)(ba)Q(ba)(ab) e quindi aQb.

Abbiamo già visto che i semigruppi zero-sinistri (destri) sono rettangolari.

Viceversa vale il seguente:

Un semigruppo rettangolare è il prodotto diretto di un semigruppo zero-sinistro e di un semigruppo zero-destro. Inoltre questa fattorizzazio ne è unica a meno di isomorfismi.

Dimostrazione. - Sia S un semigruppo rettangolare. Consideriamo gli insiemi A e B di tutti i sottoinsiemi di S della forma xS = Sx, cioé $A = \{xS/xeS\}$, $B = \{Sx/xeS\}$, e facciamo vedere che A è un semigrup po zero-sinistro e che B è zero-destro, cioé proviamo che $\forall xS,ySeA$.

$$(xS)(yS) = xS$$
 e $\forall Sx, Sy \in B : (Sx)(Sy) = Sy.$

Proviamo intanto che
$$\begin{cases} xyS = xS \\ Sxy = Sy \end{cases}$$

Da yS \underline{c} S segue che xyS \underline{c} xS. Inoltre xS = (xyx)S = (xy)(xS) \underline{c} xyS. Quindi xyS = xS.

Analogamente Sxy = Sy. Ne segue che

$$(xS)(yS) = (xS)(yxS) = x(Syx)S = (xSx)S = xS$$
. Analogamente

$$(Sx)(Sy) = Sy$$
 cioé vale
$$\begin{cases} (xS)(yS) = xS \\ (Sx)(Sy) = Sy \end{cases}$$

Proviamo ora che S è prodotto diretto di A e B.

Siano $p : S \rightarrow A,q : S \rightarrow B$ due applicazioni così definite

$$p(x) = xS$$
, $q(x) = Sx$.

Proviamo che p e q sono epimorfismi. Intanto sono banalmente suriettive.

^(*) Recentemente, è stato dimostrato (v.[4](Bibl.)) il seg. Teorema più generale:

TEOREMA.- Un semigruppo S è fattoriabile come S=AB, con A semigruppo zero-sinistro e B semigruppo zero-destro se e solo se S è completamente semplice non banale (né gruppo destro né gruppo sinistro) ed esiste un idem potente k tale che kSk = k.

Inoltre sono omomorfismi in quanto:

$$p(xy) = xyS = xS = xSyS = p(x)p(y).(Analogamente per q).$$

Consideriamo ora il prodotto diretto AxB e sia $r : S \rightarrow AxB$ l'applicazione così definita r(x) = (p(x),q(x)).

La r è un omomorfismo, infatti:

$$r(xy) = (xyS,Sxy) = (xS,Sy)$$

 $r(x)r(y) = (xS,Sx) (yS,Sy) = ((xS)(yS),(Sx)(Sy)) = (xS,Sy)$.

La r è suriettiva, infatti:

$$\forall (xS,Sy) \in AxB \quad \exists xy \in S \quad \exists' \quad r(xy) = (xyS,Sxy) = (xS,Sy).$$

La r è iniettiva, cioé $r(x) = r(y) \implies x = y$, infatti:

$$r(x) = r(y) \implies (xS,Sx) = (yS,Sy) \implies xS = yS, Sx = Sy e per la rettangolarità di S si ha che : $\{x\} = xSx = ySx = ySy = \{y\}$, da cui $x = y$.$$

In conclusione S è isomorfo al prodotto diretto di A e B.

Proviamo ora che la precedente fattorizzazione di S è unica a meno di isomorfismi, cioé presa un'altra fattorizzazione di S questa è isomorfa alla prima, più precisamente se A' x B' è un'altra fattorizzazione di S faremo vedere che esiste un isomorfismo tra A ed A' e un isomorfismo fra B e B'.

Sia r': $S \rightarrow A'$ un isomorfismo, dove A' è un semigruppo zero-sinistro e B' è un semigruppo zero-destro, e A'xB' il loro prodotto diretto. Definiamo due applicazioni come segue:

$$p': S - A' e q': S \rightarrow B' da r'(x) = (p'(x), q'(x)).$$

Le due applicazioni sono suriettive, infatti essendo r' sopra, cioé $\forall (a',b') \in A'xB' = x \in S \implies r'(x) = (p'(x),q'(x)) = (a',b'), risulta che: \forall a' \in A' \implies x \in S \implies p'(x) = a' e \quad \forall b' \in B' = x \in S \implies q'(x) = b'$

Inoltre p' e q' sono omomorfismi, infatti da r'(xy) = r'(x)r'(y) e da r'(xy) = (p'(xy),q'(xy)), r'(x) r'(y) = (p'(x),q'(x))(p'(y),q'(y)) si deduce che

$$(p'(xy),q'(xy)) = (p'(x),q'(x))(p'(y),q'(y')) = (p'(x)p'(y),q'(x) q'(y))$$
e quindi

$$p''(xy) = p'(x)p'(y)$$
 e $q'(xy) = q'(x)q'(y)$.

Proviamo ora che $p(x) = p(y) \Longrightarrow p'(x) = p'(y)$.

Infatti se p(x) = p(y), cioé xS = yS, risulta p'(xS) = p'(x)p'(S) = p'(x) (essendo A' un semigruppo zero sinistro) e analogamente p'(yS) = p'(y), e quindi p'(x) = p'(y). (Analogamente per q').

Esistono perciò due epimorfismi $f:A \rightarrow A'$ e $g:B \rightarrow B'$ tali che p = fp e q' = gq. La f e la g sono anche iniettive, infatti siano $xS \neq yS$ e supponiamo per assurdo che f(xS = f(yS)).

Essendo xyS = xS si avrebbe xyS \neq yS quindi xy \neq y. Ma p''xy = fp(xy) = f(xyS) = f(xS) = f(yS) = fp(y) = p'(y) e a'(xy) = qq(xy) = g(Sxy)= g(Sy) = gq(y) = q'(y).

Quindi avremmo r'(xy) = r'(y): assurdo perché r' è un isomorfismo e quindi iniettivo e $xy \neq y$. Quindi f e g sono biunivoche.

in conclusione se S è isomorfo, tramite r', al prodotto diretto A xB essendo A' isomorfo ad A tramite f e B' isomorfo a B tramite g, la nuova fattorizzazione di S è isomorfa alla precedente, così il lemma è completamente provato

Osservazione 1.1.-

Gli insiemi A e B precedentemente definiti sono gli insiemi di tutti gli ideali minimali destri e sinistri di S rispettivamente.

Infatt: per ogni xeS xS è un ideale destro di S in quanto

(xS)S \underline{c} xS. Inoltre è minimale; infatti supponiamo che esista un altro ideale destro K t.c. K \underline{c} xS, allora preso xs \underline{c} xS, essendo K non vuo to e incluso in xS, risulterà ogni suo elemento del tipo xs, ora preso xseK. si ha che xsx = x (poiché S è rettangolare) e xs = (xsx)s = =(xs,(xs) e KS \underline{c} K, quindi ogni elemento xs di xS è anche elemento di K, per cui K = xS e xS è minimale.

Osservazione 1.2.-

Abbiamo visto in un lemma precedente l'equivalenza tra le due identita abc = ac e aba = a Va,b,c e S, dove S è una banda.

Quindi crascuna di esse può definire le rettangolarità di una banda. Diamo ora altre identità in bande che sono equivalenti alla rettangolarità:

Sorge ora il problema di determinare le condizioni perché tali identità siano equivalenti alla rettangolarità. Ciò sarà discusso successivamente e troveremo che l'equivalenza delle precedenti identità con la rettangolarità è solo un caso particolare del Teorema 6.2.

Osservazione 1.3.

Le due identità, aba = a e abc = ac, non sono equivalenti per semigruppi qualsiasi La prima infatti definisce una banda rettangolare, ma

la seconda definisce una classe un poco più ampia di semigruppi che contengono bande rettangolari.

Esempio di banda.-

Sia S un semigruppo commutativo.

Per ogni elemento a di S definiamo il seguente sottinsieme: $K_a = \{b \in S/b^n = ca, a^m = db, per qualche c, d \in S, con m, n \in \mathbb{N}\}$

$$a_{\rho}b \iff b \in K_{a}$$
 (a,b $\in S$),

è una relazione di equivalenza in S.

Si vede facilmente che la relazione p

Infatti, evidentemente a p a; e a p b implica b p a.

Inoltre, se $b \in K_a$ $e c \in K_b$ (a,b,c \in S), esistono x,y \in S ed m,n \in IN, tali che $b^n = x a$, $c^m = y b$, dunque $c^{mn} = y^n b^n = (y^n x) a$. Analogamente si dimostra che esistono un elemento $z \in$ S ed un $t \in$ IN tali che $a^t = zc$, e pertanto $c \in K_a$. Dunque se a p b e b p c ne segue $a \cdot c$. I sottinsiemi K_a (aeS) sono detti componenti archimedee di S.

Proposizione 1.-

Se
$$x \in K_a$$
, $y \in K_b$, allora $xy \in K_{ab}$ (a,b $\in S$).

Dimostrazione. - Sia $x \in K_a$, $y \in K_b$; allora è $x^m = v$ a, $y^n = z$ b. per opportuni $v,z \in S$, $m,n \in \mathbb{N}$. Supposto m > n, abbiamo

$$(xy)^{m} = x^{m}y^{m} = v a y^{m-n} z b = w a b.$$

Analogamente si prova che esistono un elemento $w' \in S$ ed un $k \in IN$ talche $(ab)^K = w'xy$. Perciò $xy \in K_{ab}$.

Sia E = K,aeS ; per la Proposizione l è lecito definire in E la seguente moltiplicazione:

$$K_a - K_b = K_{ab}$$
.

Tale moltiplicazione, evidentemente, è associativa, dunque E è ur semigruppo

Proposizione 2. -

Ogni K ∈ E è un sottosemigruppo di S ed E è una banda.

Dimostrazione. -

Siano x,y \in K_a; allora, per la Proposizione l., xy \in K_{a2}; ma. evident mente, a². a, dunque xy \in K_a, onde K_a è un sottosemigruppo di S Infine K_a· K_a = K_{a2} = K_a, dunque E è idempotente.

2.- Teorema di decomposizione. -

Teorema 2.1.-

Data una banda S esiste un omomorfismo Ø di S su una banda commutativa T tale che l'immagine inversa di ogni elemento di T e una banda rettangolare. L'omomorfismo Ø è il più debole, nel senso che ogni altra immagine omomorfa commutativa di S è anche un'immagine omomorfa di

Dimostrazione. -

Dalla transitività e dalla compatibilità a sinistra e a destra della (Lemmi 1.10 e 1.11) segue che P è compatibile, cioé definisce un omomorfismo Ø, precisamente l'epimorfismo canonico di S su S/P; per la compatibilità di P risulta che S/P è un semigruppo.

Proviamo che S/P e commutativo e idempotente. Vale la commutatività perché per ogni a,b ϵ S:

$$ab(ba)ab = ab^2a^2b = (ab)(ab) = ab$$
 e

$$ba(ab)ba = ba^2b^2a = (ba)(ba) = ba,$$
 cioé abPba.

Inoltre $\forall a \in S: a^2 Pa$, perché $a^2 a a^2 = a$ e a $a^2 a = a$, quindi $S^{(p)}$ è idempotente.

Proviamo ora che l'immagine inversa di ogni elemento di S/P (cioé ogni classe di equivalenza mod. P) è una banda rettangolare (cioé una banda anticommutativa).

Infatti presi due elementi a,b є S in una stessa classe d'equivalenza,il loro prodotto sta ancora nella stessa classe, cioé aPb --> aPab, in quan to, per i lemmi 1.9 e 1.8, risulta aPb --> aRab --> aPab. Inoltre aPa² e a² = a quindi ogni classe è una banda.

Proviamo che è anche anticommutativa. Infatti presi a,b nella stessa classe (cioé aPb) con a ≠ b risulta:

(ab)(ba) = abba = aba = a e (ba)(ab) = b a a b = b a b = b, se fosse a b = b a sarebbe anche (ab)(ba) = (ba)(ab) cioé a = b, contro l'ipotesi, per cui ab \neq ba.

Proviamo ora che l'omomorfismo Ø è il più debole, nel senso che ogni altra immagine omomorfa commutativa di S è anche immagine omomorfa di S/P.

Sia Q un'altra relazione d'equivalenza compatibile, Q quindi definisce l'epimorfismo canonico di S sulla banda commutativa S/Q (stiamo supponendo per ipotesi che S/Q sia commutativa).

Siano ab є S t.c. aPb, ora poiché per ogni a,b є S a b Q b a (in quanto S/Q è commutativa), dal lemma 1.12 segue che è anche aQb, cioé P ç Q. Allora, per il terzo teorema di omomorfismo sulle strutture, i semi-

gruppi S/Q e $\frac{S/P}{Q/P}$ sono isomorfi, possiamo perciò considerare l'epi-

morfismo di S/P su S/Q che ad ogni classe mod. P associa la classe mod. Q che la contiene. Si è così trovato che un'altra qualsiasi immagine omomorfa commutativa S/Q di S è anche immagine omomorfa di S/P e quindi Ø è l'omomorfismo più debole.

Una versione di tale teorema più chiara e moderna è la seguente:

Teorema 2.1.-

Una banda è un "semireticolo" di bande rettangolari. Infatti data una banda S esiste un semireticolo Γ ed una famiglia disgiunta di bande rettangolari di S, con insieme di indici in Γ , $\{S_i/\gamma \in \Gamma\}$, t.c.:

1)
$$S = \bigcup_{Y \in \Gamma} S_Y$$

2)
$$S_{\gamma} S_{\delta} \subseteq S_{\gamma \delta}$$
 $\forall \gamma, \delta \in \Gamma$.

Osserviamo che il semireticolo più è il semigruppo. I del Teorema precedente in quanto ogni banda commutativa è un semireticolo; gli Si sono le immagini inverse degli elementi di I stesso, infatti esse costituiscono una partizione di Si e, essendo bande anticommutative, sono semigruppi rettangolari.

Inoltre, presi t,q \in T.si prova facilmente che $^{-1}(t) \ \Phi^{-1}(q) \ c \ \Phi^{-1}(tq), \ e \ quindi \ e \ vera \ anche \ la \ seconda \ proprietà \ sugli \ S \ .$

3. - Semigruppi totali. -

Diamo ora una definizione interessante che è una generalizzazione della definizione di banda.

Un <u>semigruppo</u> S <u>si dice totale</u> se ogni suo elemento può essere scritto come prodotto di due lementi di S stesso, cioé $S^2 = S$, quindi

Vale la seguente implicazione: S banda \Longrightarrow S semigruppo totale. Infatti $\forall a \in S$ con S banda $\exists a, a \in S$ \ni' $a = a \cdot a$, quindo S è totale. Non vale naturalmente il viceversa.

Lemma 3.1.- Un semigruppo totale S è rettangolare se e solo se è sodsisfatta l'identità abc = ac $\forall a,b,c \in S$.

Dimostrazione.-

Sufficienza.

Sia S totale. Supponiamo per ipotesi che abc = ac $\forall a,b,c \in S$. Preso allora $a \in S$: a = xy per qualche elemento x,y di S. Allora $a^2 = (xy)^2 = (xy)(xy) = x(yx)x = xy = a$. Cosicché S è una banda, da cui, per il lemma 1.2. S è rettangolare.

Necessità:

Ovvia, perché ogni semigruppo rettangolare, per il lemma 1.2., soddisfa l'identità abc = ac, e quindi anche un semigruppo totale la soddisfa.

Teorema 3.1.-

Sia S un semigruppo che soddisfa l'identità abc = ac. Allora esiste un sottosemigruppo rettangolare R di S e una partizione di S, con come insieme di indici tale che

$$S = \underset{r \in S_r}{U_R} S_r$$
 dove
$$S_r \cap S_t = \emptyset$$

$$se \qquad r \neq t$$

$$r \in S_r$$

$$e \qquad S_r \cap S_t = r \cdot t$$

Dimostrazione. -

Sia S un semigruppo che soddisfi l'identità abc = ac. Consideriamo l'applicazione $f: S \to S$ definita da $f(x) = x^2$. Allora f è un omomorfismo di S in S, infatti $f(xy) = (xy)^2 = x(yx)y = xy = x(xy)y = x^2y^2 = f(x) f(y)$.

Sia R l'immagine di S tramite f:

$$R = f(S) = \{x^2/x \in S\}$$

Risulta che $R^2 \subseteq R$, infatti preso $a^2b^2 \in R^2 : a^2b^2 = (ab)^2$ essendo f un omomorfismo, quindi $a^2b^2 \in R$, inoltre $R \subseteq S^2$ perché $x^2 \in S^2$ $\forall x^2 \in R$. Quindi $R^2 \subseteq R \subseteq S^2$.

Viceversa $S^2 \subseteq R \subseteq R^2$, infatti ogni elemento xy di S^2 è idempotente, perche $(xy)^2 = x(yx)y = xy$, quindi xy $\in R$; e $R \subseteq R^2$, in quanto $x^2 = xx = xx^2x = x^2x^2$. In conclusione $R^2 = R = S^2$.

Ora $R^2 = R$ ci dice che R è totale, e per il lemma 3.1. è rettangolare. Allora preso $r \in R$ e definito S_r come segue $S_r = \{x \in S_r\}^2 = r$, $S_r = \{x \in S_r\}^2 = r$,

 $S = {}_{r} \cup S_{r}$, dove $r \in S_{r}$ e $S_{r} \cup S_{t} = \{rt\}$. Infatti essendo R idempotente, in quanto rettangolare, risulta $r^{2} = r$, da cui reS_{r} ; e se $x \in S_{r}$, $y \in S_{t}$ allora $x^{2} = r$, $y^{2} = t$ e quindi $xy = x(xy)y = x^{2}y^{2} = rt$, cioé $S_{r} \cup S_{t} = \{rt\}$.

4. - Bande regolari. -

Una banda S si dice:

- 1) regolare a sinistra se aba = ab
- 2) regolare a destra se aba = ba
- 3) regolare se abaca = abca

per ogni a,b,c ∈ S

Seguono dalle definizioni i seguenti lemmi:

Lemma 4.1.-

Una banda S regolare a sinistra (destra) è regolare. Infatti per ogni a,b e S aba = ab per ipotesi, presi dunque a,b,c e S abaca = (aba)ca=abca Analogamente a destra.

Lemma 4.2.-

Il prodotto diretto di bande regolari (a sinistra, a destra) è anch'esso regolare (a sinistra, a destra).

Basta tener conto infatti della definizione di prodotto diretto tra semigruppi e della definizione di bande regolari (a sinistra, a destra).

Lemma 4.3.-

Ogni sottosemigruppo di una banda regolare (a sinistra, a destra) è anch'esso regolare (a sinistra, a destra).

Lemma 4.4.-

Una banda S zero-sinistra (zero-destra) è regolare a sinistra (a destra). Infatti ¥a,beS:

$$ab = a$$
 (ba = a) = > aba = (ab)a = ab(aba = a(ba) = ba)

Lemma 4.5.-

Una banda rettangolare S è regolare.

Per il lemma 1.2. una banda rettangolare soddisfa l'identità abc = ac, allora abaca = (ab)a(ca) = abca, $\forall a,b,c \in S$.

Lemma 4.6.-

Una banda è zero-sinistra (zero-destra) se e solo se è rettangolare e regolare a sinistra (a destra).

La condizione è sufficiente, infatti ¥a,b∈S:

aba = a, aba = ab \Longrightarrow >ab = a. Analogamente a destra.

La condizione è necessaria, infatti per il lemma 4.4. ogni banda zero-si nistra è regolare a sinistra, e ogni banda zero-sinistra è rettangolare. An<u>a</u> logamente a destra.

Lemma 4.7.-

Una banda S è commutativa se e solo se è regolare a sinistra e a destra. Infatti $\forall a,b \in S$.

$$ab = ba < = > (aba = ab e aba = ba)$$

Lemma 4.8.-

Un semigruppo totale S è una banda regolare a sinistra (a destra) se e solo se soddisfa all'identità aba = ab (aba = ba).

Dimostrazione. -

La condizione è necessaria banalmente.

La condizione è sufficiente, basterà provare che S è idempotente. Infatti per ipotesi è $S^2 = S$ e quindi preso xeS risulta x = ab con $a,b \in S$. Allora $x^2 = (ab)(ab) = a(bab) = a(ba) = aba = ab = x, quindi <math>S$ è idempotente.

Diamo ora altre definizioni.

Sia S una banda. Allora per il Teorema 2.1 esiste un semireticolo e una famiglia disgiunta di sottosemigruppi rettangolari di S, con insieme degli indici in $^{-}$, S_{vv} ve $^{-}$, tale che

(i)
$$S = \bigcup_{v \in V} S_v$$

(ii
$$S_{\gamma}S_{\delta} S_{\gamma\delta} S_{\gamma\delta} \qquad \qquad Y_{\gamma}$$
 , $\delta \in \Gamma$

Inoltre : è unico a meno di isomorfismi e di conseguenza così è per gli S_{γ} .

Diremo semireticolo strutturale, e S_{γ} il γ -nucleo.

Un omomorfismo $p: S \rightarrow \Gamma$, tale che $p(S_{\gamma}) = \gamma$, detto omorfismo naturale; p è un omomorfismo, infatti, essendo $S = \bigcup_{\gamma \in \Gamma} S_{\gamma}$, per ogni $x, y \in S$ esistono S_{γ} , S_{δ} C S t.c. $x \in S_{\gamma}$, $y \in S_{\delta}$, allora $p(x) = \gamma$, $p(y) = \delta$, e poiché $xy \in S_{\gamma} S_{\delta}$ e $S_{\gamma} S_{\delta} C$ $S_{\gamma} S_{\delta}$ risulta $xy \in S_{\gamma} S_{\delta}$ e quindi $p(xy) = \gamma S_{\delta}$. Allora p(x)p(y) = p(xy).

In questo caso scriveremo $S \sim \mathbb{E}\{S_{\gamma}/\gamma \varepsilon \Gamma\}$ e la diremo <u>decomposizione</u> strutturale di S.

Diamo ora alcuni corollari relativi al Teorema 2.1.

Corollario 4.1.-

Ogni nucleo S è un sottosemigruppo rettangolare massimale da S. Inoltre ogni seottosemigruppo rettangolare di S è contenuto in uno ed un solo nucleo.

Dimostrazione. -

 ficare due casi per gli elementi α , β di p(R) prima considerati: che α e β siano confrontabili, o che non lo siano. Nel primo caso può accadere, per esempio, che $\beta \leq \alpha$, allora $\alpha\beta = \beta\alpha = \beta$ e $\alpha(\beta\alpha) = \alpha\beta = \beta$, d'altra parte $\alpha\beta\alpha = \alpha$ (essendo p(R) rettangolare), quindi avremmo $\alpha = \beta$, che è assurdo.

Supponiamo ora invece che α e β non siano confrontabili, allora $\alpha \not \leq \beta$ $\beta \not \leq \alpha$, cioé $\alpha \beta \neq \beta$ e $\alpha \beta \neq \alpha$, ma $\alpha \beta \alpha = \alpha$ e $\alpha \beta \alpha = \alpha (\beta \alpha)$ = $\alpha (\alpha \beta) = \alpha \alpha \beta = \alpha \beta$ (perché Γ è un semigruppo idempotente commutativo), quindi sarebbe $\alpha \beta = \alpha$, assurdo.

Diciamo allora γ l'unico elemento di p(R), cioé $\gamma = p(R)$; si ha allora che $R \subseteq p^{-1}(\gamma) = S_{\gamma}$. Cioé R è contenuto in uno ed un solo S_{γ} , poiché gli S_{γ} sono disgiunti. D'altronde S_{γ} è rettangolare per ogni $\gamma \in \Gamma$ (per il Teorema 2.1), quindi ogni nucleo S_{γ} è un sottosemigruppo rettangolare massimale, perché ogni altro sottosemigruppo rettangolare R di S è incluso in S_{γ} .

Corollario 4.2.-

Per ogni omomorfismo (suriettivo) $q: S \rightarrow \Delta$, dove Δ è un semireticolo, esiste un unico omomorfismo (suriettivo) $f: \Gamma \rightarrow \Delta$ tale che q = fp, dove $p: S \rightarrow \Gamma$ è l'omomorfismo naturale, cioé f rende commutativo il seguente diagramma

Dimostrazione. -

Poiché $q(S_{\gamma})$ è rettangolare, in quanto S_{γ} è rettangolare e q è un

omomorfismo, esso è ridotto ad un unico elemento in Δ . Allora esiste un'applicazione $f: \Gamma \to \Delta$ definita da $f(\gamma) = q(S_{\gamma})$; f è un omomorfismo, infatti $f(\gamma\delta) = q(S_{\gamma\delta})$; $f(\gamma) \cdot f(\delta) = q(S_{\gamma}) \cdot q(S_{\delta})$, $q(S_{\gamma}) = q(S_{\gamma\delta}) = q(S_{\gamma\delta})$ e poiché $q(S_{\gamma\delta})$ ha un solo elemento: $q(S_{\gamma\delta}) = q(S_{\gamma\delta})$.

Inoltre q associa ad S_{γ} l'unico elemento di Δ $q(S_{\gamma}), p(S_{\gamma}) = \Delta$ e $f(\gamma) = q(S_{\gamma})$ quindi $f(p(S_{\gamma})) = q(S_{\gamma})$, se ne conclude che q = fp. L'unicità della f è immediata.

Corollario 4.3.~

Sia q:S $\rightarrow \Delta$ un omomorfismo suriettivo, dove Δ è un semíreticolo. Se $q^{-1}(\delta)$ è rettangolare per ogni $\delta \in \Delta$, allora l'applicazione f definita prima è un isomorfismo. Più precisamente possiamo considerare Δ come il semireticolo strutturale di S, $q^{-1}(\delta)$ come il δ -nucleo e q come l'omomorfismo naturale, cioé S $\sim \Sigma\{q^{-1}(\delta)/\delta \in \Delta\}$

Dimostrazione. -

Poiché $q^{-1}(\delta)$ è rettangolare, esiste un unico $\gamma \in \Gamma$ t.c. $q^{-1}(\delta)$ \underline{c} S_{γ} per il Corollario 4.1. Ora abbiamo $\gamma = p((S_{\gamma}) \supseteq pq^{-1}(\delta) = p(fp)^{-1}(\delta) = p(fp)^{-1}(\delta)$ ora $\gamma = p(fp)^{-1}(\delta)$ per t.c. $\gamma \supseteq p(fp)^{-1}(\delta)$ e per $p(fp)^{-1}(\delta)$ per t.c. $p(fp)^{-1}(\delta)$ per $p(fp)^{-1}(\delta)$ per t.c. $p(fp)^{-1}(\delta)$ per t.c. p(f

Teorema 4.1.-

Una banda è regolare a sinistra (a destra), se e solo se i suoi nuclei sono tutti zero-sinistri (zero-destri).

Dimostrazione. -

Condizione necessaria.

Sia S una banda regolare a sinistra. Poiché ciascun nucleo, S di S è rettangolare, esso è anche regolare a sinistra per il lemma 4.3.. Inoltre ogni S deve essere zero-sinistro per il lemma 4.6. .

Condizione sufficiente.

Sia ogni nucleo di S zero-sinistro. Siano a e S $_{\alpha}$, b e S $_{\beta}$. Allora ab,ba e S $_{\alpha\beta}$ = S $_{\beta\alpha}$, in quanto S $_{\alpha\beta}$ $\frac{\bf c}{\bf c}$ S $_{\alpha\beta}$ e F è commutativo. Perciò, essendo S $_{\alpha\beta}$ zero-sinistro, abbiamo aba = ab 2 a = (ab)(ba)=ab, il che prova che S è regolare a sinistra.

Sia Γ un semireticolo, siano A e B bande aventi Γ come loro semireticolo strutturale. Siano $A \sim \Sigma$ $\{A_{\gamma} | \gamma \in \Gamma\}$ e $B \sim \Sigma \{B_{\gamma} | \gamma \in \Gamma\}$ le loro decomposizioni strutturali. Costruiamo il prodotto diretto D = AxB. Allora i $C = A_{\gamma} \times B_{\gamma}$ possono essere considerati come sottosemigruppi rettangolari di D. Anche C = U $\{C_{\gamma} / \gamma \in \Gamma\}$ è un sottosemigruppo di D. Inoltre la decomposizione strutturale di C è $C \sim \Sigma$ $\{C_{\gamma} / \gamma \in \Gamma\}$.

Siano $p: A \rightarrow \Gamma$ e $q: B \rightarrow \Gamma$ gli omomorfismi naturali. Allora

risulta $C = \{(x,y) : x \in A, y \in B, p(x) = q(y)\},$

in quanto $p(A_{\gamma}) = \gamma$ e $q(B_{\gamma}) = \gamma$, e r:C \rightarrow r definito da r(x,y) = p(x) = q(y) è l'omomorfismo naturale.

Diciamo C il prodotto retratto di A e B rispetto a Γ e notiamo che tale prodotto dipende non solo da A,B e Γ ma anche dagli omomorfismi naturali p e q.

Lemma 4.9.-

Il prodotto retratto di una banda regolare a sinistra e di una banda regolare a destra è regolare.

Dimostrazione.-

Poiché il prodotto retratto di una banda regolare a sinistra e di una banda regolare a destra è un sottosemigruppo del loro prodotto diretto, la tesi segue dai lemmi 4.1, 4.2, 4.3. .

Proveremo ora l'inverso di questo lemma, esso svolge un ruolo essenziale nel teorema fondamentale delle bande regolari.

Lemma 4.10.-

Sia $S \sim \Sigma \{S_{\gamma}/\gamma e \bar{r}\}$ una banda regolare. Allora esistono una banda regolare a sinistra $A \sim \Sigma \{A_{\gamma}/\gamma e \bar{r}\}$ e una banda regolare a destra $B \sim \Sigma \{B_{\gamma}/\gamma e \bar{r}\}$ che hanno lo stesso semireticolo strutturale Γ , tali che S sia isomorfo al prodotto retratto di A e B rispetto a Γ .

Dimostrazione. -

Sia $S \sim \Sigma \{S_{\gamma}/\gamma \epsilon r\}$ una banda regolare. Poiché ogni γ -nucleo S_{γ} è rettangolare possiamo assumere, per il lemma 1.1, che $S_{\gamma} = A_{\gamma} \times B_{\gamma}$, dove A_{γ} è zero-sinistro e B_{γ} è zero-destro. Siano $A = U\{A_{\gamma}/\gamma \epsilon r\}$, $B = U\{B_{\gamma}/\gamma \epsilon r\}$, T = AxB. Allora S può essere identificato con un sottoin sieme di T. Proveremo che A e B possono essere considerati come semigruppi idempotenti.

Siano
$$a \in A_{\alpha}$$
, $c \in A_{\beta}$, $b,b' \in B_{\alpha}$, $d,d' \in B_{\beta}$. Allora (a,b) , $(a,b') \in S_{\alpha}$, (c,d) , $(c,d') \in S_{\beta}$.

Poniamo (e,f) = (a,b)(c,d) , (e',f') = (a,b')(c,d').

Allora (e,f), (e',f') \in S_{\alpha\beta} e precisamente e,e' \in A_{\alpha\beta} , f,f' \in B_{\alpha\beta} .

Ora poiché A_{\alpha\beta} è zero-sinistro e B_{\alpha\beta} è zero-destro risulta

(e,f)(e',f') = (e,f').

D'altra parte abbiamo

(e,f)(e',f') = (a,b)(c,d)(a,b')(c,d') = (a,b'b)(c,d'd)(a,bb')(c,d') = (a,b'b)(c,d'd)(a,b)(c,d')(c,d')(c,d')(c,d') = (a,b')(a,b)(c,d')(c,d')(a,b)(a,b')(c,d') = (a,b')(a,b)(a,b')(c,d')(a,b)(c,d)(a,b)(c,d')(a,b)(c,d') = (a,b'b)(a,b')(c,d')(a,b)(c,d)(a,b)(c,d') = (a,b'b)(c,d')(a,b)(c,d')(a,b)(c,d)(a,b)(c,d') = (a,b'bb')(c,d')(a,b)(c,d)(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b)(c,d')(a,bb')(c,d') = (a,b'bb')(c,d')(a,b'b')(c,d') = (a,b'bb')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d') = (a,b'b')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'b')(c,d')(a,b'

= (a,b'bb')(c,d')(a,b)(c,d)(a,bb')(c,d') == (a,b')(c,d')(a,b)(c,d)(a,b')(c,d') == (e',f)(e,f)(e',f') = (dalla definizione)
= (e',f') (dalla rettangolarità di $S_{\alpha\beta}$).

Quindi (e,f') = (e',f') o $e = e'.Perciò e è determinato soltanto da a e c e non dipende da b o da d. Similmente f è determinato solo da b e d. Ora possiamo definire <math>m = A \times A \rightarrow A$, $n : B \times B \rightarrow B$ da $\left(m(a,c),n(b,d)\right) = (a,b)(c,d) = (e,f)$.

Perciò A e B diventano sistemi moltiplicativi in cui m e n sono le loro moltiplicazioni e A_{γ} e B_{γ} sono sottosistemi con A_{γ} banda zero-sinistra e B_{γ} banda zero-destra. Anche T = AxB è un sistema moltiplicativo. Consideriamo la proiezione $p: T \to A$ definita da p((a,b)) = a e la proiezione $q: T \to B$ definita da q((a,b)) = b. Tali applicazioni p e q, con dominio ristretto a $S \not\subset T$, sono eviden temente omomorfismi e risulta A = p(S) e B = q(S). Poiché gli omomorfismi conservano ogni relazione definita da identità, ne consegue che associatività

e idempotenza si conservano in A e B, essendo S una banda. Se ne con clude che A e B sono bande.

Poiché A_{γ} è zero-sinistro e B_{γ} è zero-destro essi sono rettango-lari e poiché Γ è un semireticolo $A \sim \Sigma$ $\{A_{\gamma}/\gamma \epsilon \Gamma\}$ e $B \sim \Sigma$ $\{B_{\gamma}/\gamma \epsilon \Gamma\}$ diventano le decomposizioni strutturali di A e B per il Corollario 4.3. relativo al Teorema 2.1. Allora esiste una banda regolare a sinistra A e una banda regolare a destra B tale che S è il prodotto retratto di A e B rispetto a Γ .

Teorema 4.2.- Una banda è regolare se e solo se essa è il prodotto retrat to di una banda regolare a sinistra e di una banda regolare a destra.

Dimostrazione. -

Il lemma 4.9 prova che la condizione è sufficiente, e il lemma 4.10 prova che la condizione è necessaria.

Corollario 4.4.- Ogni banda regolare è contenuta nel prodotto diretto di una banda regolare a sinistra e di una banda regolare a destra.

Dimostrazione. -

Segue immediatamente dal Teorema 4.1.

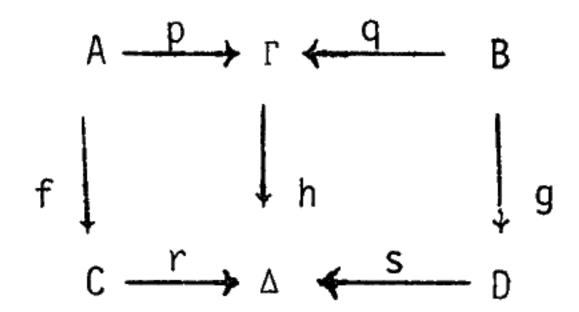
Corollario 4.5.-

Sia S il prodotto retratto delle bande A e B rispetto a Γ e sia T il prodotto retratto delle bande C e D rispetto a Δ , dove $A \sim \Sigma \ \{A_{\gamma}/\gamma \varepsilon \Gamma\} \ e \qquad C \sim \Sigma \ \{C_{\delta}/\delta \varepsilon \Delta\} \quad \text{sono regolari a sinistra e} \quad B \sim \Sigma \{B_{\gamma}/\gamma \varepsilon \Gamma\}$ e $D \sim \Sigma \ \{D_{\kappa}/\delta \varepsilon \Delta\} \quad \text{sono regolari a destra.}$

Sia $k: S \to T$ un omomorfismo, allora esiste un omomorfismo $h: \Gamma \to \Delta$ e due omomorfismi $f: A \to C$ e $g: B \to D$ soddisfacenti le seguenti condizioni:

(1)
$$k(a,b) = (f(a),g(b))$$

(2) hp = rf e hq = sg, cioé tali che il diagramma



sia analitico, dove p,q,r,s sono gli omomorfismi naturali.

Dimostrazione. -

(1) Sia dunque $k:S\to T$ un omomorfismo e siano $u:S\to \Gamma$, $v:T\to\Delta$ gli omomorfismi naturali. Allora poiché $vk:S\to\Delta$ è un omomorfismo, per il Corollario 4.2, esiste un unico omomorfismo $h:\Gamma\to\Delta$ t.c. vk=hu Quindi $v(k(S_\gamma))=h(y)=h(\gamma)$, e così $k(S_\gamma)\subseteq v^{-1}(\delta)=T_\delta$, dove $h(\gamma)=\delta$. Ora l'omomorfismo $k_\gamma:S_\gamma\to T_\delta$ definisce in modo unico gli omomorfismi $f_\gamma:A_\gamma\to C_\delta$ e $g_\gamma:B_\gamma\to D_\delta$, tali che $k_\gamma(a,b)=(f_\gamma(a),g_\gamma(b))$, dove k_γ è l'omomorfismo k_γ col suo dominio ristretto a S_γ

Poiché A e B sono rispettivamente l'unione disgiunta degli A_{γ} e dei B_{γ} , con $\gamma \in \Gamma$, f_{γ} e g_{γ} determinano univocamente le app cazioni $f: A \rightarrow C$ e $g: B \rightarrow D$ t.c.

$$f(a) = f_{\gamma}(a)$$
 se $a \in A_{\gamma}$
 $g(b) = g_{\gamma}(b)$ se $b \in B_{\gamma}$

Ne segue one k(a,b) = (f(a), g(b)) infatti, se $a \in A_{\gamma}$ e $b \in B_{\gamma}$, si ha: $k(a,b) = k_{\gamma}(a,b) = (f_{\gamma}(a),g_{\gamma}(b)) = (f(a),g(b))$.

Quindi se (a,b) $\in \Sigma$ e (a',b') $\in S$, essendo $S_{\gamma}S_{\delta} \subseteq S_{\gamma\delta}$ per $\gamma,\delta \in \Gamma$ abbiamo che:

$$(f(aa'),g(bb')) = k(aa',bb') = k((a,b)(a',b')) = k(a,b) k(a',b') =$$

$$= (f(a),g(b))(f(a'),g(b')) = (f(a)f(a'),g(b)g(b')),$$

il che prova che f e g sono omomorfismi.

(2) Presa ora la coppia $(a,b) \in S_{\gamma}$ ne segue che $(f(a),g(b)) = k(a,b) \in dove <math>\delta = k(\gamma)$, e quindi $rf(a) = \delta *h(\gamma) = hp(a)$, cioé rf = hp.Analogamente si prova che sg = hq.

Corollario 4.6.-

Condizione necessaria e sufficiente affinché l'omomorfismo k del Corollario 4.5 sia 1) iniettivo, 2) suriettivo, 3) biiettivo è che esistono rispetti
camente gli omomorfismi h,f,g che siano tutti 1) iniettivi, 2) suriettivi,
3) biiettivi, soddisfacenti tutte le condizioni del Corollario 4.5.

Dimostrazione. -

La condizione è sufficiente, infatti considerati gli omomorfismi h,f,g soddisfacenti tutte le condizioni del Corollario 4.5 e che siano l) iniettivi, 2) suriettivi, 3) biiettivi, si può considerare l'omomorfismo $k: S \to T$ definito da k(a,b) = (f(a),g(b)); si vede facilmente che k è rispettivamente l'iniettiva, 2) suriettiva, 3) biiettiva.

La condizione è necessaria, infatti sia l) k iniettivo. Allora $k^{-1}(T_{\delta})$ è rettangolare se non è vuoto, e così esso è contenuto in un solo S_{δ} per il Corollario 4.1.

Quindi h è iniettivo. Facilmente si prova che anche f e g sono iniettivi.

- 2) Sia k suriettivo. Allora
- $h(\Gamma) = h(u(S)) = v k(S) = v(T) = \Delta$, che prova che k è suriettivo. Ovvia mente anche f e g sono suriettivi.
 - 3) la biiettività segue banalmente dall'iniettività e dalla suriettività.
 - Il caso 3) del precedente Corollario può essere riesposto come segue:

Corollario 4.7.-

La decomposizione di una banda regolare nel prodotto retratto di una banda regolare a sinistra e di una banda regolare a destra è unica a meno di iso morfismi.

5. - Bande normali.

In questo paragrafo daremo il teorema strutturale di bande normali ed alcuni contenuti rilevanti.

Una banda S si dice

- (1) normale a sinistra (a destra) se axy = ayx (xya = yxa)
- (2) normale

- se axya = ayxa
- (3) semiregolare a sinistra (a destra)se axy =axyayxy(xya=xyxaxya)
- (4) seminormale a sinistra (a destra) se axy = axyay(xya = xaxya)
- (5) quasinormale a sinistra (a destra) se axy = axay (xya = xaya)

per ogni $a,x,y \in S$.

Valgono i seguenti lemmi:

Lamma 5.1.-

Se S è normale (a sinistra, a destra) allora S è regolare (a sinistra, a destra).

Dimostrazione. -

Presi $a,x,y \in S$, supposta S normale a sinistra, normale , risulta rispettivamente

$$axy = ayx \implies axa = aax = ax$$

$$axya = ayxa = ---> axaya = a(xa)ya = ay(xa)a = ayxa = axya$$

E quindi S è rispettivamente regolare a sinistra, regolare.

Lemma 5.2.-

Se S è normale e regolare a sinistra (a destra), allora S è normale a sinistra (a destra).

Dimostrazione. -

Per ogni a,x,y e S risulta:

$$axya = ayxa,axa = ax ===> axy = axya = ayxa = axy.$$

Lemma 5.3.-

Una banda è regolare se e solo se è contemporaneamente semiregolare a sinistra e a destra.

Lemma 5.4.-

Una banda è normale se e solo se è contemporaneamente quasi-normale a sini stra e a destra.

La precedente classificazione delle bande può essere rappresentata dalla seguente Tavola 1:



TAV. 1

Teorema 5.1.-

Una banda $S \sim \Sigma \{S/\gamma \epsilon \Gamma\}$ è normale a sinistra (a destra) se e solo se ogni S_{γ} è zero-sinistro (zero-destro) ed esiste una famiglia di funzioni $\Phi = \{\Phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \epsilon \Gamma\}$ soddisfacente le seguenti condizioni:

1)
$$\Phi_{\beta}^{\alpha}: S_{\alpha} \rightarrow S_{\beta}$$
 per $\alpha \geq \beta$

2)
$$\phi_{\alpha}^{\alpha}$$
 è l'applicazione identica

3)
$$\Phi_{\gamma}^{\beta} \Phi_{\beta}^{\alpha} = \Phi_{\gamma}^{\alpha}$$
 per $\alpha \geq \beta \geq \gamma$

4)
$$ab = \Phi_{\alpha\beta}^{\alpha}(a)$$
 ($ab = \Phi_{\alpha\beta}^{\beta}(b)$) per $a \in S_{\alpha}$,

Dimostrazione. -

Sia $S \sim \Sigma \{S_{\gamma}/\gamma \epsilon \Gamma\}$ normale a sinistra. Allora per il Lemma 5.1. S è regolare a sinistra. Perciò ogni S_{γ} è zero-sinistro per il Teorema 4.1. Consideriamo ora $\alpha, \beta \epsilon \Gamma$ con $\alpha \geq \beta$, a ϵS_{α} , x,y ϵS_{β} . Allora dalla normalità a sinistra di S e dal fatto che ogni S_{γ} è zero-sinistro si ha:

$$ax = axy = ayx = ay$$

$$(\beta \leq \alpha < \iff \alpha \beta = \beta \alpha = \beta , quindi S_{\alpha} S_{\beta} \subseteq S_{\alpha\beta} = S_{\beta})$$

Possiamo considerare allora l'applicazione $\phi_{\beta}^{\alpha}: S_{\alpha} \to S_{\beta}$ così definita $a \to \phi_{\beta}^{\alpha}(a) = a S_{\beta}$, e siamo sicuri che è un'applicazione perché aS_{β} è ridotto ad un solo elemento, per quanto visto prima.

E' facile così provare le condizioni 2),3),4) della tesi.

2)
$$\phi_{\alpha}^{\alpha}$$
 (a) = aS_{\alpha} = a perché S_{\alpha} è zero-sinistro.

3)
$$\Phi_{\gamma}^{\beta}(\Phi_{\beta}^{\alpha}(a)) = \Phi_{\gamma}^{\beta}(a S_{\beta}) = a S_{\beta}S_{\gamma} = a S_{\beta} = a S_{\gamma} = \Phi_{\gamma}^{\alpha}(a)$$

4)
$$\Phi_{\alpha\beta}^{\alpha}(a) = a S_{\alpha\beta} = a S_{\beta} = ab$$

Così la condizione necessaria del teorema è provata; la condizione sufficiente è contenuta nel seguente teorema:

Teorema 5.2.-

Sia Γ un semireticolo. Sia $\{S_{\gamma}/\gamma \epsilon \Gamma\}$ una famiglia disgiunta di insie mi. Sia $\Phi = \{\Phi_{\beta}^{\alpha}: \alpha \geq \beta , \alpha, \beta \epsilon \Gamma\}$ una famiglia di applicazioni soddisfacenti le condizioni 1),2),3) del Teorema 5.1.

Sia $S = U\{S_{\gamma}/\gamma \epsilon \Gamma\}$. Allora S con la moltiplicazione definita da 4) del teorema 5.1 diventa una banda normale a sinistra (a destra), la cui decomposizione strutturale è $S \sim \Sigma\{S_{\gamma}/\gamma \epsilon \Gamma\}$. Inoltre una qualunque banda normale a sinistra (destra) si può ottenere mediante questo procedimento a meno di isomorfismi.

Teorema 5.3.

Una banda normale a sinistra (a destra) è isomorfa al prodotto diretto di un semigruppo zero-sinistro (zero-destro) e di un semireticolo se e solo se ciascuna funzione di Φ del Teorema 5.2. è biiettiva.

Teorema 5.4.

Una banda è normale se e solo se essa è il prodotto retratto di una banda normale a sinistra e di una banda normale a destra.

Dimostrazione. -

Proviamo prima la condizione necessaria:

Sia S una banda normale, essa è regolare per il Lemma 5.1. Perciò per il Teorema 4.2. S è il prodotto retratto di A e B rispetto a Γ, dove Γ è il semireticolo strutturale di S e A (B) è un semigruppo regolare a sinistra (a destra), avente Γ come suo semireticolo strutturale. Poiché A(B) è normale e regolare a sinistra (a destra), esso deve essere normale a sinistra (a destra) per il Lemma 5.2. La condizione sufficiente è ovvia.

Teorema 5.5.-

Una banda $S \sim \Sigma\{A_{\gamma} \times B_{\gamma}/\gamma \in \Gamma\}$ è normale se e solo se esistono due famiglie di funzioni $\Phi = \{\Phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in \Gamma\}, \quad \Psi = \{\Psi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in \Gamma\}$ soddisfacenti le seguenti condizioni:

1)
$$\Phi_{\beta}^{\alpha}: A_{\alpha} \rightarrow A_{\beta}$$
 , $\Psi_{\beta}^{\alpha}: B_{\alpha} \rightarrow B_{\beta}$, $\alpha \geq \beta$

2) ϕ_{α}^{α} e ψ_{α}^{α} sono le funzioni identiche

3)
$$\Phi_{\gamma}^{\beta} \Phi_{\beta}^{\alpha} = \Phi_{\gamma}^{\alpha}, \Psi_{\gamma}^{\beta} \Psi_{\beta}^{\alpha} = \Psi_{\gamma}^{\alpha}, \alpha \geq \beta \geq \gamma$$

4)
$$(a,b)(a',b') = \left(\phi_{\alpha\beta}^{\alpha}(a), \Psi_{\alpha\beta}^{\beta}(b')\right)$$
 se $(a,b) \in A_{\alpha} \times B_{\alpha}$, $(a',b') \in A_{\beta} \times B_{\beta}$

Dimostrazione. -

La condizione necessaria segue dai Teoremi 5.1 e 5.4. La sufficiente è contenuta nel Teorema 5.7 successivo.

Teorema 5.6.-

Una Banda $S \sim \Sigma \{S_{\gamma} / \gamma \epsilon r\}$ è normale se e solo se esiste una famiglia di funzioni $\Theta = \{v_{\alpha}^{\alpha} : \alpha \geq \beta, \alpha, \beta \epsilon r\}$, tale che :

1)
$$\theta_{\beta}^{\alpha}: S_{\alpha} \rightarrow S_{\beta}, \quad \alpha \geq \beta$$

2) θ_{α}^{α} è l'identità.

3)
$$\theta_{\gamma}^{\beta} \theta_{\beta}^{\alpha} = \theta_{\gamma}^{\alpha}$$
, $\alpha \geq \beta \geq \gamma$

4)
$$ab = \theta_{\alpha\beta}^{\alpha}(a) \theta_{\alpha\beta}^{\beta}(b)$$
 se $a \in S_{\alpha}$, $b \in S_{\beta}$

Dimostrazione. -

La condizione necessaria segue dal Teorema 5.5 precedente. La condizi ne sufficiente è contenuta nel Teorema 5.8 seguente.

Teorema 5.7.-

Sia Γ un semireticolo. Siano $\{A_{\gamma}/\gamma \epsilon \Gamma\}$, $\{B_{\gamma}/\gamma \epsilon \Gamma\}$ due famiglie disgiunte di insiemi. Siano Φ , Ψ due famiglie di funzioni soddisfacenti le condizioni 1),2),3) del Teorema 5.5. Allora con la moltiplicazione de finita dalla proprietà 4) del Teorema 5.5 , $S = U\{A_{\gamma} \times B_{\gamma}/\gamma \epsilon \Gamma\}$ diventa una banda normale, la cui decomposizione strutturale è $S \sim \Sigma\{A_{\gamma} \times B_{\gamma}/\gamma \epsilon \Gamma\}$.

Dimostrazione. -

Per il Teorema 5.2 $A = U\{A_{\gamma}/\gamma \epsilon \Gamma\}$ e $B = U\{B_{\gamma}/\gamma \epsilon \Gamma\}$ risultano rispettivamente una banda normale a sinistra e una banda normale a destra le cui decomposizioni strutturali sono rispettivamente $A \sim \Sigma \{A_{\gamma}/\gamma \epsilon \Gamma\}$ e $B \sim \Sigma \{B_{\gamma}/\gamma \epsilon \Gamma\}$.

Per il Teorema 5.4 la banda $S = U\{A_{\gamma}xB_{\gamma}/\gamma \epsilon \Gamma\}$, la cui decomposizione strutturale è $S \sim \Sigma$ $\{A_{\gamma} \times B_{\gamma}/\gamma \epsilon \Gamma\}$ è una banda normale, in quanto è prodot to retratto di una banda normale a sinistra e di una banda normale a destra.

Teorema 5.8.-

Sia Γ un semireticolo. Sia $\{S_{\gamma}/\gamma \in \Gamma\}$ una famiglia disgiunta di semigruppi rettangolari. Sia θ una famiglia di funzioni soddisfacente alle condizioni 1),2),3) del Teorema 5.6. Allora con la moltiplicazione definita

dalla proprietà 4) del Teorema 5.6 , $S = U\{S_{\gamma}/\gamma \epsilon \Gamma\}$ diventa una banda normale, la cui decomposizione strutturale è $S \sim \Sigma \{S_{\gamma}/\gamma \epsilon \Gamma\}$.

Dimostrazione. -

La dimostrazione segue facilmente dal Teorema 5.2.

Teorema 5.9.-

Una banda normale è isomorfa al prodotto diretto di un semigruppo rettangolare e di un semireticolo se e solo se ogni funzione di Φ e Ψ (Θ) del Teorema 5.5. (5.6) è biiettiva.

Dimostrazione. -

Segue facilmente dal Teorema 5.3.