Uniqueness of the one-dimensional bounce problem as a generic property

in $L^{1}([0,T]; \mathbb{R})$.

by Michele CARRIERO and Eduardo PASCALI (Istituto di Matematica, LECCE)*

<u>Sunto.</u> - Si prova l'esistenza di un sottoinsieme M^* , di seconda categoria in $L^1([0,T]; \mathbb{R})$, tale che per ogni assegnata forza f in M^* il problema del rimbalzo unidimensionale ha unicità.

Introduction.- In [1] we studied the problem of a material point moving on a straight line subject to a strength f depending on time and to a perfectly elastic bouncing law.

This problem consists in the following:

given $f \in L^{1}([0,T]; \mathbb{R})$, s < 0 be \mathbb{R} or s = 0, $b \leq 0$ (permissible data), find $u \leq 0$ such that it satisfies a lipschitz condition on [0,T]; $\int_{0}^{T} [u(t) \ddot{\phi}(t) - f(t)\phi(t)] dt \leq 0 \quad \text{for every} \quad \phi \in C_{0}^{\infty}([0,T]; \mathbb{R}^{+});$ for u < 0 one has $\int_{0}^{T} [u(t)\ddot{\phi}(t) - f(t)\phi(t)] dt = 0 \quad \text{for every} \quad \phi \in C_{0}^{\infty}([0,T]; \mathbb{R});$ for every $t \in]0,T[$ $\dot{u}^{+}(t)$ and $\dot{u}^{-}(t)$ exist; moreover $\dot{u}^{+}(0), \dot{u}^{-}(T)$ exist and

$$\frac{1}{2} \left[\dot{u}^{\pm}(t) \right]^{2} = \frac{1}{2} \left[\dot{u}^{+}(0) \right]^{2} + \int_{0}^{t} f(n) \dot{u}(n) dn \qquad \text{for } t \in [0,T];$$

u(0) = s, $\dot{u}^{\dagger}(0) = b$ (energy conservation law).

* This work was carried out in the framework of the activities of the

G.N.A.F.A. (C.N.R. - Italy).

In [1] we have given a counterexample to uniqueness. Prof. E. De Giorgi asked whether one could characterize the functions of $L^{1}([0,T]; \mathbb{R})$ for which the corresponding bounce problem has a unique solution.

- 2 -

Also in [1] we gave conditions that ensured uniqueness (e.g. if f is a simple function (cfr. theorem 2 in [1]).

The aim of this paper is to show that uniqueness of the bounce problem is a generic property in $L^{1}([0,T]; \mathbb{R})$.

Actually, following G. Vidossich [2], we prove the existence of a G_{δ}^{-} set M^* of $L^1([0,T]; \mathbb{R})$ that contains the dense set $M_0 = \{feL^1([0,T];\mathbb{R}) | f$ simple} of $L^1([0,T];\mathbb{R})$ such that for every feM^* the solution to the Cauchy problem for the one-dimensional bounce is unique.

We recall that:

- (i) a G_{s} -set is a countable intersection of open sets;
- (ii) a "generic property" about points of a topological space is a property that holds for all points of a subset of second category.

Since second category is the topological analogue of almost everywhere, a generic property is a property that is true for most points in the given space.

The relation between G_{δ} - sets and the concept of generic property is that a dense G_{δ} -set in a second category space is of second category (since

the complement of a dense G_{δ} -set is a first category set,while in a second

category space the complement of a first category set is of second category).

The first step is to prove that the set $M_0 = \{feL^1([0,T];\mathbb{R})\}$ is simple} is not a G_{δ} - set in $L^1([0,T];\mathbb{R})$. It suffices to remark that M_0 is a set of first category because it is a subset of $\bigcup_{n \in \mathbb{N}} C_n$ which is of first category, where $C_n = \{feL^1([0,T];\mathbb{R})\}$ f constant on $(\alpha_n,\beta_n) \in [0,T]$, α_n and β_n rational}. <u>Lemma.</u> - <u>If</u> feM₀, $(f_n)_n$ <u>is a sequence in</u> $L^1([0,T];\mathbb{R})$ <u>converging to</u> f <u>in</u> $L^1([0,T];\mathbb{R})$, and if u_n <u>is a solution to the Cauchy problem for</u> <u>bounce with strength</u> f_n , <u>then</u>

$$\lim_{n \to +\infty} un = u_f \qquad uniformly in [0,T],$$

where uf is the unique solution to the Cauchy problem for bounce with strength f.

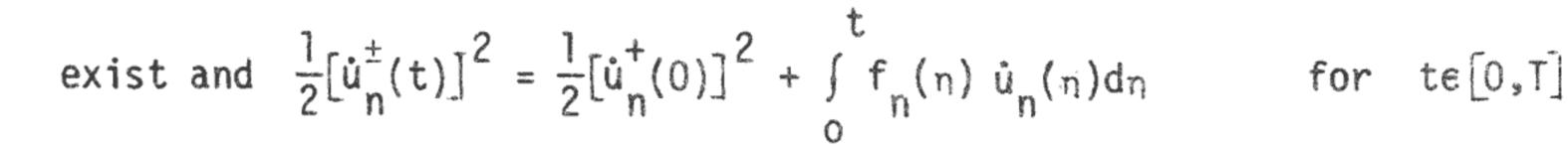
Proof. For every neN we have

(j)
$$u_n \in Lip([0,T];\mathbb{R}), u_n \leq 0$$
 in $[0,T];$

$$T_{(jj) \int_{0}^{T} [u_n(t) \ddot{\phi}(t) - f_n(t)\phi(t)] dt \leq 0 \quad \text{for every} \quad \phi \in C_0^{\infty}([0,T];\mathbb{R}^{\dagger});$$

(jjj) for
$$u_n < 0 \int \left[u_n(t) \ddot{\phi}(t) - f_n(t)\phi(t) \right] dt = 0$$
 for every $\phi \in C_0^{\infty}([0,T];\mathbb{R});$

(jv) for every
$$t \in]0,T[\dot{u}_n^{\dagger}(t)]$$
 and $\dot{u}_n^{-}(t)$ exist; moreover $\dot{u}_n^{\dagger}(o), \dot{u}_n^{-}(T)$



$$(v) u_n(0) = s , u_n^+(0) = b .$$

From (jv) and (v) it follows that

$$\|\dot{u}_n\|_{L^{\infty}([0,T];\mathbb{R})} \leq \text{constant (indipendent of n).}$$

It follows, because bouncing points for $u_n(where \dot{u}_n^+ = -\dot{u}_n^+ \neq 0)$ are at most countable, that the sequence $(u_n)_n$ is equibounded and equilipschitz (equicontinuous) and therefore a subsequence $(u_n)_k$ exists such that

lim
$$u = v$$
 uniformly in $[0,T]$.
 $k \rightarrow +\infty$ k

We claim that $v = u_f$. Indeed if we prove that v is solution of the Cauchy problem for bounce with strength f, $v = u_f$ and $\lim_{n \to +\infty} u_n = u_f$ uniformly in [0,T] shall follow, on account of uniqueness.

Because $(u_n)_k$ is equilipschitz, $k \rightarrow +\infty$ lim $u_k = v$ uniformly in $[0,T]_k$ and lim $f_k = f$ in $L^1([0,T]; \mathbb{R})$, from (j), (jj), (jjj) and (v) follow $k \rightarrow +\infty$ k

respectively

 $v \in Lip([0,T]; \mathbb{R})$, v < 0 on [0,T];

.

 $\int_{0}^{T} \left[v(t) \dot{\phi}(t) - f(t)\phi(t) \right] dt \leq 0 \quad \text{for every} \quad \phi \in C_{0}^{\infty}([0,T]; \mathbb{R}^{+});$ o
for v < 0 one has $\int_{0}^{T} \left[v(t) \ddot{\phi}(t) - f(t)\phi(t) \right] dt = 0 \quad \text{for every} \quad \phi \in C_{0}^{\infty}([0,T]; \mathbb{R}^{+});$

$v(0) = s, \dot{v}^{+}(0) = b.$

Moreover
$$\dot{v}^{\dagger}(t)$$
 and $\dot{v}^{-}(t)$ exist for $t \in]0,T[$ and $\lim_{k \to +\infty} \dot{v}_{k} = \dot{v}_{k \to +\infty}$
almost everywhere in $[0,T]$.
Indeed the function $w(t) = v(t) - \int_{0}^{t} (\int_{0}^{t} f(\xi)d\xi)d\eta$ is the uniform
 $\delta = \delta$

- 5 -

limit of the sequence of concave funtions (see (jj))

$$w_n(t) = u_n(t) - \int (\int f_n(\xi)d\xi)d\eta$$
.
 $k = k = 0 = 0$

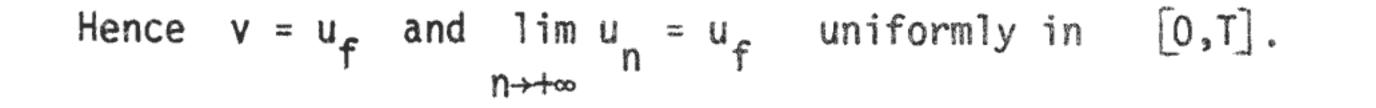
Therefore w is concave, almost everywhere in [0,T] differentiable and lim $\dot{w}_n = \dot{w}$ almost everywhere in [0,T]. $k \rightarrow +\infty$ k

This implies
$$\lim_{k \to +\infty} \hat{u}_{n_{k}} = \hat{v}$$
 almost everywhere in $[0,T]$, because

$$\lim_{k \to +\infty} f_{n_{k}} = f \quad \text{in} \quad L^{1}([0,T]; \mathbb{R}).$$
Moreover $\lim_{k \to +\infty} \int_{0}^{t} f_{n_{k}}(n)\hat{u}_{n_{k}}(n)dn = \int_{0}^{t} f(n) \hat{v}(n)dn$.
Then, from (jv), as $k \to +\infty$:

$$\frac{1}{2}[v^{\pm}(t)]^{2} = \frac{1}{2}b^{2} + \int_{0}^{t} f(n) \hat{v}(n)dn \quad \text{almost everywhere in } [0,T] \text{, and also}$$

$$\frac{1}{2}[\hat{v}^{\pm}(t)]^{2} = \frac{1}{2}b^{2} + \int_{0}^{t} f(n) \hat{v}(n)dn \quad \text{for every } t \in [0,T] \text{, by a continuation}$$
of $[\dot{v}^{\pm}]^{2}$ at those points where v has no derivate.



 $S(f) = \{u \in Lip([0,T]; \mathbb{R}) | u \text{ solution to the Cauchy problem} \}$

for the one-dimensional bounce with strength f}.

Define

$$D: L'([0,T]; \mathbb{R}) \rightarrow \mathbb{R}$$
 by

$$D(f) = \sup_{v,w\in S(f)} ||v-w|| C^{\circ}([0,T];\mathbb{R})$$

We note that, if $feD^{-1}(0)$ then S(f) is made by only one function.

The proof (cfr.[2])rests on the following statement:

(a) For every $f \in M_0$ and every $n \in N$ there exists an open neighborhood \mathfrak{J}_n^f of f in $L^1([0,T];\mathbb{R})$ such that $D(g) < \frac{1}{n}$ for every $g \in \mathcal{J}_n^f$.

In order to prove (a), we proceed ab absurdo. Therefore we assume the statement to be false.

Then there are $\overline{f} \in M_0$, $\overline{n} \in N$ and a sequence $(f_k)_k$ in $L^1([0, \overline{I}]; \mathbb{R})$ such that $\lim_{k \to +\infty} f_k = \overline{f}$ in $L^1([0, T]; \mathbb{R})$ and $D(f_k) \ge \frac{1}{\overline{n}}$ for every k.

By $D(f_k) \ge \frac{1}{n}$, for every k there are $v_k, w_k \in S(f_k)$ such that

$$\|\mathbf{v}_{k} - \mathbf{w}_{k}\|$$
 C°([0,T]; \mathbb{R}) $\geq \frac{1}{n}$

Since $\lim_{k \to +\infty} f_k = \bar{f}$ in $L^1([0,T]; \mathbb{R})$ and $\bar{f} \in M_0$, the lemma implies $\lim_{k \to +\infty} v_k = \lim_{k \to +\infty} w_k = u_{\bar{f}}$ uniformly in [0,T], a contradiction.

Then
$$\Im_n = \bigoplus_{n=1}^{f} \Im_n$$
 is an open subset of $L^1([0,T]; \mathbb{R})$. Therefore
 $M^* = \bigcap_{n=1}^{n} \Im_n$ is a G_{δ} - set in $L^1([0,T]; \mathbb{R})$.

For every $f \in M^*$ the Cauchy problem for the one-dimensional bounce with strength f has an unique solution since $M^* \underline{c} D^{-1}(0)$ by (a).

<u>Theorem</u>. - <u>The uniqueness of solutions to the Cauchy problem for the</u> <u>one-dimensional bounce is a generic property in</u> $L^{1}([0,T];\mathbb{R})$.

Proof. -

The assertion follows at once (in view of what was said at the end of the introduction), because M_0 is dense in $L^1([0,T];\mathbb{R})$ and $L^1([0,T];\mathbb{R})$ is of second category, since it is a complete metric space (Baire's theorem).

Accettato per la pubblicazione

su parere favorevole del Prof. G. VIDOSSICH