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THE FIRST NORMALIZATION THEOREM
FOR REGULAR HOMOTOPY OF FINITE DIRECTED GRAPHS.(*)

RIASSUNTO.- Dati uno spazic topologico normale S ed un grafo ginito ed
ondlentate G, 84 dimostra che ognd funzione negolare di S 4n G & omo-
topa ad una funzione completamente negolare, vale a dire priva di singola
VE v

INTRODUCTION.- Keeping on [2] and using the results obtained there (see

Background), we prove that every regular function from a normal S to

pological space S to a finite directed graph G 1is homotopic to a com
pﬂéteﬁg negulan function, i.e.without singularities (see Theorem 12).

(The first normalization theorem).

In order to define the singularities, we consider particular subset of
the graph G. Precisely, we say that a subset of G 1is headed (resp.facled)
if it includes a vertex which is a predecessor (resp. successor) of all
the others; while it is totally headed (resp. fotally tailed) if all its

subsets are headed (resp. tailed). (See Definition 1).

(*) Work performed under the auspices of the Consiglio Nazionafe dellfe Ricer-
che (CNR, GNASA), Italy

‘++) Consequently, we distinguish between normal space and T4-Space, according

to whether it is a Tzwspace or not.
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We note that a totally headed set is also totally tailed and vice-versa.

(See Proposition 4).

Then, a n-tuple v],...,un of the graph G 1is called a singulanity for
an o-regular (resp. 0’—regu1ar) function T, if it is non-headed (resp.
non-tailed) and if the intersection f:TTC;TVW .o N 7$T7:iﬁqis non-empty.
(See Definition 5). (In particular, in a finite undirected graph there

are only singular couples).

Moreover, we give the first normalization theorem for regular functions
from a pair of topological spaces S,S' to a pair of graphs G,G', where
S is a normal topological space and S' a closed subspace of S.(See
Theorem 15). At least, in similar conditions, we prove that two homotopic

completely regular functions are also completely homotopic. (See Theorem 16).

The previous results and, particularly, the first normalization theorem
in its different statements will be used in the next papers in order to pro-
ve that:

1) 14 S s a paracompact topological space, thene 45 a bifection between
the sets of homotopy classes Q(S,G) and Q*(S,G). (Duality theorem).

2) The homotopy groups of a 4inite dinected graph G are Lsomonphie to the
classical homotopy agroups o4 the polfhedrnon of a sudtable simplicial com

plex associated with G.

 As concerns 1), we note that the first normalization theorem allows us to
identify the sets 0Q(S,G) and Qf(S,G] of regular homotopy classes with
the ones QC(S,G} and Q:(S,G) of completely regular homotopy classes.
Consequently, the duality theorem follows from a bijection between QCiS,G!

* 3
and QtlS,G), as we prove in a paper near to appear.

As concerns 2), to obtain the above-mentioned isomorphisms, we can now anti
cipate that we will associate with G the simplicial complex, whose simplexes

are the totally headed subsets of G.



Let Gobe a finite directed graph.
If v,w are two vertices of G, we use the symbol v - w (resp. v # w) to
denote that ww is(resp. is not) a directed edge of G. if v »w , we call
v a predecesson of w and w a successon of .

If, for all v,weG, we have (v-w)<e= (w->v),the graph is called undirected.

Let S be a tepofogical space.

Given a function 4 : S—+ G from S to G, we denote by capital letter
V the set of the {-counterimages of v € G, and if we must display the

function 4, we put V6 E 6_I(v}.

*
A function § : S~ G is called o-regularn (resp. ¢ -regwlar] if,for
all v,w € G such that v# w and v 4w itis VN @ =4 (resp.
V N =¢).(See Definition 3).

That is equivalent to saying:

(viw,V"W # ¢ and 4 o-regular) = v > w
J M o *
v #w, VW #¢ and 4 o -regular) = w > v.
A function 4 : S > G is called strongly  o-regufar (resp. strongly

u*-neguﬁan) if:

. . *
i) 4§ is o-regular (resp. o -regular);

ii) for all v,w € G such that v # w, v#w and w+ v it follows
V7 W= 4.(See Definition 4).

n

Let 1 ={0,1] be the unit interval in Ri. Two o-regular (resp.o*-regular)
functions 4,g : S > G are called o-homotopic (resp. o*—homotopic) if there
exists an o-reqular (resp.o*—regu1ar) function F : SxI -~ G such that, for

all x €S, Fi(x,0) = 4(x) and F(x,1) = g(x). The function F 1is called

(*) The references are ralative to [2]
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an o-homotopy {resp. o*~homatopg)between 4 and g.(See Definition 5).

The previous o-homotopy (resp. 0*-homotopy) relation is an equivalence re
lation in the set of o-regular (resp. 0*-regu1ar) functions from S to G.
We denote by Q(S,G) (resp. Qf(S,G] the set o4 the o-homotopy (resp. c*~homg

topy) classes of o-regular (resp. o*-regular) functions.
The graph G with the same vertices of G and such that (u - v in G]=

= (v>u in G*) is called the duatlfy dinected ghaph as regards G.(See

Definition 6). Hence, we have:

DUALITY PRINCIPLE. - Every true proposition in which appear the concepts

o4 o—neguﬁanitg,o*—neguﬂa&izg, sthongly o-regularity, stnongly o*—neguﬂaniiy,
o-homotpoty, o*—homoiopy, Q(S,G),O*(S,G), nemadins true 4§ the concepts of
o-regulandty and o*~neguﬂanétg (strnongly o-regularnity and strongly c*—nzguﬂg
nity, o-homotopy and w*—homozopy, 0(S,G) and 0*(8,6) ane {nterchanged
throught the statement o4 the proposition.

Moreover, let S' be a subspace of S and G’ a subgraph of G.
A function 4 from the pair S,S' to the pair G,G' is called o-regular
(resp. o*—neguKan, sthongly o-negular, strongly o*neguﬂan) if both the
function §:S~+G and its restriction 4' = 5/3, : 8" > G' are o-re

gular (resp. 0*—regu1ar, etc.) functions.(See Definition 7).

Two o-regular (resp. o*—regular) functions 4,9 : S,S8' > G,G' are called
o-homotopic (resp. o*—homotopicl, if there exists an o-regular (resp. o*-regg
lar) function F: SxI,8'xI - G,6", such that for all x e S, F(x,0)=4(x)
and F(x,1) = g(x). The function F 1is called an o-homotopy (resp. o*~homotopg}

between § and g. (See Definition 8).

In [2] we proved the following results:
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R.1.- Let f be an o-regulan function from a noamak topological space
S toa finite dinected graph G and Y a closed subset of S. Then, L4
for a € G we have Afr‘l Y = ¢ and Aff\ Y # ¢ there exists an c¢-regulan
junction g : S » G, which {8 o-homotopic to T and such that Ag Ny = ¢

(See Lemma 6).

R.2 - In the coné&&ggtion of R.1, if there exist n vertices p],...,pneG,
such that p*;ﬂ_“ﬁpi:{b then also £t folLows P?r‘...npg=¢a.(5ee

Corollary 7).

R.3.- Let f be an o-negular function from S,S' to G,G', where S
(s a nowmal topological space, S' a closed subspace of S, Y a closed
subset of S',6 a finite dinected graph and G' a subgraph of G. Then,
(4 4o a € G we have Af NY = ¢ and Af Ny = ¢, there exists an o-ne

gufan function g : S,5' » G,G', which s o-homotopic to f and such that

Al DY =g . (See Lemma 11).

R.4.- In the comstruction of R. 3, 44 there exist n vertices p1,...,pheG

o

mﬁb;

and m  vertices Qq.,...,q_ € G', such that pf r‘...r‘pff"'Qf n...MNQ
1 m 1 n 1

then atso it {ollows that P? ﬂ...ﬂpg ﬁq? N..0QJ = ¢ . White, from

P‘; ﬁ...ﬂp_fn—ﬂ... = ¢ Lt nesults P? ﬁ...ﬁpﬁﬂ S' = ¢. (See Corol-
lary 12).

By Duality Principle, the results dual to the previous ones are also

* .
true for o -regular functions.

- - ——— e i am am s e A e aw me mww aw m e  = D D DD S
FE T T T 33 3 3ttt it ittt

DEFINITION 1.- Let G be a directed graph and X a non-empty subset of
G. A vertex 0§ X «s called a head (resp. a tail) ¢f X «n G, if it is a
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predecesson (resp. a successon) of all the othern verntices of X. We

dencte by He(X) (resp. TG(X)) on, more simply, by H(X)(resp.TIX)} the
set o4 the heads (resp. taids)ok X 4n G.Then X 45 called headed

inesp. tailed) £f H(X) # ¢ (resp. T(X) # ¢), cthewwise, X (8

called non-headed (xesp. non-tailed).

Finally X s called totally headed (nesp. totally tailed), «4 ald
the non-empty subsets of X anre headed (nesp. tailed).

REMARK 1. - If X 1is a singleton, we agree to say that H(X} = T(X) = X,
then X 1is totally headed and also totally tailed. If X is a pair, X
headed = X totally headed <= x tailed « X totally tailed.

REMARK 2. - This definition and the following ones can be extended

to undirected graphs. (See Proposition 6).

REMARK 3. - The concepts of head and tail (headed and tailed subset,

etc.) are dual to each other.

DEFINITION 2. - A non-headed (nesp. non-tailed) subset X 4is called
minimal {§ all its non-empty propen subsets are headed (nesp. tailed).

DEFINITION 3. - A 4inite dinected graph G &5 calfed almost complete
{4 the set of Lits vertices s totally headed.

REMARK. - A complete finite undirected graph is also almost complete.

PROPOSITION 1. - A finite dinected graph G 48 almost complete (44
the diagram (*) o4 the nelation ( - ) includes the diagham of a totaliy
ordered nelation [ <) in G.

(*) We use the term diagram rather than graph because graph is

already used in another sense.
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Prock., - 1) Since G is almost complete, we can choose a vertex Y e G,
which is a predecessor of all the other vertices of G, as the first one; then

a vertex v, € G —{u]}, predecessor of all the other vertices of G-{v as

]55
the second one; and so on.

ii) Since the diagram of the relation ( - ) includes the diagram of a totally
ordered relation ( <) in G, we can totally order the vertices of G. Then

every vertex of G is a predecessor of the vertices subsequet in the order

relation.

Hence G is almost complete.

REMARK. - By ordering the vertices of G as in b) of Proposition 1, we say
that the order relation ( < ) of G 1is compatible with the relation ( - )
of G,

PROPOSITION 2. - Let G be an almost complete graph. Then the dually
directed graph G* L5 also almost complete.

Proog. - Let ( < ) be a totally order relation, compatible . with the re-
lation ( = ) of G.Then the dual order relation ( > ) is compatible with the

relation («) of the dually directed graph G*.

DEFINITION 4. - Let G be a directed graph and X a subset of G. We
call maximal subgraph induced by X the subgraph of G consisting of those

directed edges of G, whose ventices are in X.

PROPOSITION 3. - A subset X o4 G 4«5 totally headed Aif4 the maximal
subgraph <nduced by X s almost complete.

PROPOSITION 4. - A subset X of G s totally headed iff it is totally
tailed.
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Proc4. - By Remark 3 to Definition 1 and by Proposition 2,3 we have:

X totally headed in G <= the maximal subgraph induced by X is
almost complete <= the dually directed graph of the maximal subgraph

*
induced by X 1is almost complete <> X 1is totally headed in G <= X

is totally tailed in G.

PROPOSITION 5. - A subset X of G 44 non-headed minimal if4 it is

nen-talled minimal.

Proo4. - Since all the subsets of X are totally headed, by Proposition 4,
they are also totally tailed. If we assume that X is tailed, then, by Defi-
nition 1, it is totally tailed. Hence, by Proposition 4, it is also totally

headed. Contradiction.

REMARK, - Then atmest complete araph, totally headed subset, non-headed
miimal subset are selfdual concepts, while it does not follow for headed or

tailed subset.

PROPOSITION 6. - Tn an unditected graph there does not exist any non-headed

menimal  n-tuple X with n > 2.

Proo4.- 1f all the pairs of vertices of X are headed (i.e. they are

vertices of edges), then the maximal subgraph induced by X 1is complete. Hence

it is also totally headed.

EXAMPLES.

1) Let G ={a,b,c,d,e} be the graph with the edges a >~ b, a ~ ¢, a -~ d,

o -d, b ~e¢, ¢ ~d, Then the subset {a,b,e} 1is non-headed and non-tailed,
but it is not minimal non-headed (i.e.minimal non-tailed); {a,b,ci 1is headed
and non-tailed; {b,c,d} is non-headed and tailed; {a,0,c,d} is headed and

tailed, but not totally headed (tailed).
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2) The graphs G = {u,v,w} with the edges u > v, u-w, v>w and
G'" = {g,n,5,t} with edges ¢+, ¢ >4, ¢ 1, n 45, > %, 5> 1
are examples of almost complete graphs. Moreover, the sets {u,v,w} ,
{q,n,5,t} are examples of totally headed (i.e. totally tailed) subsets.

Their compatible orders are, respectively, u < v <w, ¢ <1 < 4 < £,

3) In the graphs G = {4,g,h} with the edges 4§ - g, g > h, h - 4 and
G'" = {{,mn,p} with the edges L ->m, L >n, m>n, m->p, n-> 4L, n-+p,
p >t p->m the sets {{,g,i} and {&,m,n,p} are examples of non-headed

minimal (i.e. non-tailed minimal) subsets.

PROPOSITION 7. - Let S be a topological space, G a ginite dirnected
ghaph, f : S > G an o-regular functicn from S to G and X = {v},v
a non-headed subset of G (n 3z 2). Then Lt hotds:

A

.................

Proo4. - Since X 1is a non-headed subset, there is no vertex Ve which
is a predecessor of all the other n-1 vertices. Then, for every 4 =1,...,n

Tet w, be a vertex such that v, # w, . From o-regularity of 4 it is

U ,it

V. "W. = . Since w. is one of the vertices wv.,...,v. 1,v. -,..
{ 1 L-17 7441 n

A A

£011ows v"”...“-vé, nyd nyb
] L+

7
N Nypd 2
-1 L e Vn b

]

DEFINITION 5. - Let S be a ftopological space, G a finite dirnected

sV )
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graph, f : S = G an o-regular (resp. o*—neguﬂan) junction grom S Lo

G and X = {v1,v2,...,vn} a n-tuple of verntices of G with n = 2.

Then X 44 called a singularity ¢4 f on a singular set of f «<4:

) X 45 non-headed (nesp. non-tailed);
oo
.

)V

—'F
N
ce Vn Ao
Morneover, X 48 called a proper singularity cf f {4 £) <s neplaced by:

)X s non-headed mindmal (L.e. non-talled mindmal) .

—_— e— —

Finally, the closed aset Vf{1 V;r’ .0 Vﬁ 8 called the support cof the
singulandty.
PROPOSITION 8. - 14 X = {V1,V

v 1 s oa sdngularnity of f, then

P X
2 n ~
has an empty intersection with the image of <ts suppent, i.e. £(V, 0 ...rwvn)rWX x

N

Procg. - It follows from Proposition 7.

REMARK. - Since every non-headed (non-tailed) subset of G includes a
non-headed minimal (non-tailed minimal) subset of G, every singularity in-

cludes a proper singularity, Hence, every singular couple is a proper singularity.

DEFINITION 6. - Let S  be a topological space, G a finite dinected
graph and f : S > G an o-regulan [(resp. o*—neguﬂa&) punction grom S to G.
The dunction f 45 called completely o-regular (resp. completely 0*—regu1ar)

on sdimply c.o-reqular (resp. c.o*-regu1ar),15 thene ane no singularnities o4 f.

We note that Definitions 5,6 can be extended to undirected graphs. Then it

follows:

PROPOSITION 9. - Let S  be a topological space and G a finite undirected
graph. Then a strongly regulan function (see [5] , Definition 3) f : S -G

{nom S to G 4s also c.regulan.



Proo4. - By definition of strongly regular function there is no singular

couple of vertices. Resides, by Proposition 6, there does not exist any

non-headed minimal n-tuple with n > Z, then there are no proper singularities

of 4. Hence, by Remark to Proposition 8, § is c. regular.

DEFINITION 7. - Let S be a topological space, S' a subspace of S,
G a finite directed graph, G' a subgraph o4 G and f : S,5' =+ G,G' a
gunction from the pain S,S' to the pain G,G'. The function f 45 called
completely o-regular (xesp. completely o*—regular) orn sdimply c.o-regular
(nesp. c.0 -regular), if both f : S G and its nestriction f' : S' + G

are c.o-regulan (resp. c.o*—&eguﬁan}.

REMARK. - If S" is a subspace of S', G" a subgraph of G including
G', 4 :8,8" -+ G,G' a c.o-regular (resp. c.o*—regu¥ar) function, then also
the functions § : §$,8" - G,6', § : S,8' - G,G" and § : S,S" > G,G" are

*
c.o-regular (resp. C.0 -regular).

PROPOSITION 10. - Every strongly regularn gfunction grom a pairn of topo-
Logical spaces S,S’ to a pair of finite undirected graphs G,G' 45 also

c.negulan,

i o B e o o o o o o —

PROPOSITION 11. - Let S  be a nowmal topological space, G a finite dine

cted graph, f : S > G an o-regular function grom S to G and X={v,,...,v @

1
a singularity cof f. Then there exists an o-regulan function g 4rom S 4o

G, which L8 o-homotopic to f and such that:

n



- 12 -

L) X 4 not a sdngulandity of  9;

L) abl the singulanities of g are also singulanities of T,

Prock. - i) Since X is a singularity of 4, by Definition 5 and Proposi
o~ £ 7 A e
tion 7, it follows vi’ f‘lvé‘f‘\...ﬂv;‘I =4 and ufﬁug ﬁ..ﬂu;}1 # 9. If

7 4 : :
we put U f\...rﬁu; =V, by R.1 there exists an o-regular function g froi

S to G, which is o-homotopic to 4 and such that V?f\ Y = ¢. Now, by

Proposition 8, v eees Vo ¢ 5(V6 Ny). Since, from the definitions of functio

1

gai,j} (see [2], Proof of Lemma 6), only the couterimages of elements of

5(V$ Ny) are increased, it follows:

S — —_ (»{,j‘) ({_,j) — -
yzuéﬁ UD N ﬁvé S ;;,Ug N .ﬁvg - :hvsﬂ .ﬂvg .
2 3 = = n = = 7 n’
_ — - .
hence (V2N V=4 = (V? (WVgrw r\Vj = ¢ )
i1)If, for a non-headed subset {w,,...,w } of G, we have w?f\.,.f‘wi # ¢

by R.2, it follows w?fﬁ...f\mi $#¢ , i.e. {w .,wm} is also a singula

17
rity of 4.

THEOREM 12. - (The first normalization theorem). Let S be a noumak
topological space, G a finite dinected graph and f an o-regular function
from S ¢ G . Then there exists a completely o-regulan function,

c-nemotepie to the function T,

Proo4. - Let v, ,v

1 be a singular couple of {£. By Proposition 11, we

2

construct an o-regular function g, which is o-homotopic to ¢ and such tha

1 = ¢ . Now if Wy s, is another couple, which is a singular set of
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g (and then of 4}, by repeating the argument, we can remove also this
singularity. Hence, by a finite number of steps, we eliminate, at first,
all the proper singular couples, then, all the proper singular terns, ect.,
and at last, all the proper singular n-tuples. Since the number of vertices
is finite, the argument comes to an end and, by Remark to Proposition 8,ever

singularity is eliminated. Hence we obtain the assertion,

REMARK. - If we just limite ourselves to eliminate the singular couples,
we obtain the Weak normalization theorem: Under the assumptions o4 Theorem
every regulan function L8 homotopic to a strongly regularn function. {(See [2.

Theorem 10).

[f we now consider functions between pairs, we can obtain, similarly to f

proof of Proposition 11, the following results by R.3 and R. 4:

PROPOSITION 13. - Let S be a nommal topological space, S' a closed
subspace ¢k S,G a finite dirnected graph, G' a subgraph ¢f G, f : S,5' -
an o-requlan qunction, f' o §' » Q' the nestriction of f : S ~+G6 ¢ S’
X' o= {u],...,um} a singulanity of  f'. Then there exists an o-regularn

sunction g @ S,S' - GG ,which {4 o-homotopic to f and such that:

O XY s wot a sdngulanity ok gl

) all the singulanities of g’ arne alse singulandities of f';

»
L) all the singularities of g ane alsc singulardies cf f;

) all the swngwlanities o4 g with a non-empty sypport in S’ ane o4

the same fype 4on f,iqe.iV$ﬁ o ﬁvgr%' £ 4) ==>(V?q . nVfﬂf

PROPOSITION 14. - Unden the assumpifions cf Proposition 13, Let X={v

be a sangulardity of f with a nen-empty suppont in S',<.e. Vg r‘.A.mVfr
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Then there exists an o-regular function g @ S,S' = G,G' which <8 v-nometop
to f and such that:

0ovIn NI N = & s

<) V] s Vn S ¢ ;

L] conddtlons (L), AL}, 4v] of Proposition 13 arne thue.

THEOREM 15, - (The first normalization theorem between pairs). Let S  be
a normal topolegieal space, S'  a closed subspace ¢f S, G a finite dd
wected graph, G' a subgraph ¢f G and f : S,8' » G,G' an o-negulan punci
Then there exists a completely o-regular function k : S,8' - G,G', c¢-homoto

te the junction f.

Prock. - By using Propositions 13,14 we proceed as in the proof of Theore

12. So,at first, we can construct an o-regular function h : S,S' » G,G',

which is o-homotopic to £ and such that:

1Wh' 8" > G is a c. o-regular function;

2) every singularity of h has an empty support in S'.

Hence the singularities of h have the support in the open set S-S'. Ther
in order to obtain the c.o-regular function k : S,8' » G,G', we use Theorem
But now we choose the closed neighbourhoods w{i’f), which we empioyed in
the proof of R. 2 (see [2], Lemma 6), such that they are disjoined from S'.

Then k£ 1is the sought function.

REMARK 1. - By using Theorem 20 (Extension theorem) and Coroliary 21 of
2], we have two other ways for proving this theorem or, more exactly, for

obtaining the previous funtion h.

The first way consists in constructing an o-regular function g:S,S - G,G',

which is o-homotopic to ¢ and such that its restriction g' : S' - G' is
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c.o-reqular, and then by taking an extension h of g.
The second way lies in constructing an extension g : S,U » G,G' of ¢,
where U 1is a closed neighbourbood of S', and then an o-regular function

h: S, U= G,G'", such that its restriction ﬁ : U~ G'" 1is c.o-regular.

REMARK 2. - If we just limit ourselves to eliminate the singular couples
of vertices, we obtain the Weak noamalization thectem between pains. (See [2]
Theorem 16).

THEOREM 16. - (The first normalization theorem for homotopies). Let
SxI  be a nowmal topological space, S' a closed subspace of S , G «a
finite dinected graph, G' a subgraph o4 G, f,g : S >~ G (rnesp. f,g : S,5" = (
twe o-homotopde completely o-regular punctions. Then between the functions
f and g there also exists an o-homotopy, which 44 a completely c-regulan

function. (See [2], Theorem 17).

Prock. - Let F : SxI » G be an o-homotopy between 4 and g. We defi
the homotopy J : SxI - G, given by:

Pé(x) ¥x € S, Vit e 0,%—}

Jix,t) = § Fix,32-1) Vx e S, vte [l 2]
373

Lg(x) ¥x € S, ¥t e % ,11

L i

If we call J],JZ,J3 the restrictions of J respectively to Sx[O,%],

12 -2 . i . .
Sxig, 5} , Sx| 531], it follows that J 1is o-regular since the function

J],J ,J.. are such. Moreover, J. and J, are also c.o-regular, in fact a

273 1 3
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singularity of 7 , for example, implies directly a singularity of < .

1 3
- 2 .
Consequently, also the restriction of J to Sx{[o,%J U [531]} is c.o-re
gular.By Theorem 12 (resp. Theorem 15), we can replace J with a c.o-regula
function K which coincides with J on Sx{0} and Sx{1}, by choosing
o (¢
the closed neighbourboods w(i’j] SRS

(resp. L ), which we employed in the

proof of R.2 (resp. R. 4), disjoined from the closed sets Sx{0} and Sx{l

FINAL REMARKS.

i) We can generalize the foregoing results to the case of n closed subspac

S],...,S of S and of n subgraphs G

.G of G such that S. is
n n f

-Ig-o
a subspace of S, and G. a subgraph of G{, Vi, f =1,...,n,§ > i.(See {2
5 8b)). V

For example, in the case similar to Theorem 15, in order to construct a

c.o-regular function L : S,S],...,Sn > G,G],...,Gn o-homotopic to a given

function { : S’SI""’SH > G,G],...,GH, at first, we construct a function

1 . .
n  which is o-homotopic to § and such that:
] ]

1) its restriction ﬁq : Sn - GV is c.o-regular;
¥ L

: . ] s
2) every singularity of h : S - G and of the restrictions hl:si -~ G

¥i

c ¥

A

T,...,h-1, has an empty support in Sn.

Then, by choosing the closed neighbourhcods, which we employ, disjoined

. 2 . . .

from S” , we construct a function h which is o-homotopic to hi anc
such that:

: L 2 i :
1) its restriction I ¢ S - G is c.o-regular;

-1 n-1 n-1
. . 2 , .

Z) every singularity of 4 : S~ G and of the restrictions hi : S+ G

Yo = 1,...,n-2, has an empty support in S

n-1"
And so on.
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ii) The previous propositions and theorems can be translated by duality

* .
for o -regular functions.

iii) A further generalization can be obtained by asking that the spaces S

or

SxI are T, +T, spaces rather than normal. (See [2], Lemma 23).
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