1. Introduction.

In this note we are examining again the model proposed by S. Paveri-Fontana in [5] and studied in various papers, in particular [7] and [2].

The problem of evolution, connected with such a model is
(1) $\left\{\begin{array}{l}\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}\right) u+\frac{\partial}{\partial v}\left(\frac{w-v}{T} u\right)=F(u) \\ u(x, v, w ; 0)=u_{0}(x, v, w) \\ u(x, v, w ; t)=0\end{array}\right.$
where, if $f=f(x, v, w)$,
$x \in R ; t>0 ; v, w \in\left(v_{1}, v_{2}\right)=v$
$\left(0 \leq v_{1}<v_{2}<+\infty ;\right.$
$x \in R ; v, w \in \bar{V}$
$t \geq 0 ; x \in R ; v, w \in \bar{v}$

$$
\text { (2) } \begin{aligned}
F(f) & =q\left[\left(J_{1} f\right) \cdot\left(J_{2} f\right)-f J_{3} J_{1} f\right] \\
J_{1} f & =\int_{v_{1}}^{v_{2}} f\left(x, v, w^{\prime}\right) d w^{\prime} \\
J_{2} f & =\int_{v}^{v_{2}}\left(v^{\prime}-v\right) f\left(x, v^{\prime}, w\right) d v^{\prime} \\
J_{3} f & =\int_{v^{\prime}}^{v}\left(v-v^{\prime}\right) f\left(x, v^{\prime}, w\right) d v^{\prime} .
\end{aligned}
$$

The meaning of the symbols can be found in [5] , [1] and [2]. In [2], the problem (1) is studied when $u$ belongs to the space of the uniformly continuous and bounded functions $X=$ U.C.B. $\left(R^{3}\right)$ and the existence and uniqueness of the local (in time) strict solution is proved. Noted that $u=u(x, v, w ; t)$ is a car density and that

$$
\int_{-\infty}^{+\infty} d x \int_{v_{1}}^{v_{2}} d v \int_{v_{1}}^{v_{2}} u(x, v, w ; t) d t
$$

gives the total number of cars on the motorwdy at the time $t$, the most natural space to study the problem (1) is $L^{\prime}\left(R^{3}\right)$. In [1] , mollifying the non-linear part of the equation, i.e. $F$, we obtainedthe existence and uniqueness of the global
strictsolution. Mollifyng, in our case, means replacing $F$ with
(3) $\quad F_{\varepsilon}(f)(x, v, w)=q\left[K_{\varepsilon}\left(J_{1} f\right) \cdot\left(J_{2} f\right)-f K_{\varepsilon} J_{3} J_{1} f\right]$
where
(4) $\left(K_{\varepsilon} f\right)(x, v, w)=\int_{x}^{+\infty} k_{\varepsilon}\left(x^{\prime}-x\right) f\left(x^{\prime}, v, w\right) d x^{\prime}$
and
(5) $k_{\varepsilon} \epsilon L^{\infty}(0,+\infty) ; k_{\varepsilon}(y) \geq 0 ; k_{\varepsilon}(y)=0$ if $y \notin(0, \varepsilon) ; \int_{0}^{\infty} k_{\varepsilon}(y) d y=1$.

The aim of this work is to study the original problem, i.e.(1), in $L^{1}$ and to find the connexion between the solution $u(t)$ of (1) and the solution $u_{\varepsilon}(t)$ of the mollified problem.

Precisely we prove that if $u_{\circ} \in L^{1} \cap L^{\infty}$ then (1) has a unique local "mild" solution, i.e. the integral version of (1) has a unique local solution. If $[0, \bar{t}]$ is the existence time interval of such solution $u(t)$, we have

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|u_{\varepsilon}(t)-u(t)\right\|=0
$$

uniformly respect to $t$ in $[0, \bar{t}] .\|\cdot\|$ is the usual norm in $L^{1}$.
We shall use the well-known results of linear semigroup theory for which we refer to [4] Chapter 9. For the results on the non linear evolution equations (in particular for semi-linear ones) we refer to [3], [6] and [8].

## 2. THE ABSTRACT PROBLEM.

Denote $X=\left\{f=f(x, v, w) ; f e L^{1}\left(R^{2} x \bar{V}\right)\right\}$ and $X_{0}=\{f ; f e X, f(x, v, x)=0$ a.e. if $v \notin V\} \quad X_{0}$ is a closed subspace of $X$ and we use it to get the third relation in (1).

Define

$$
\left\{\begin{array}{l}
A_{1} f=v f_{x}-\frac{w-v}{T} f_{v}+\frac{1}{T} f  \tag{6}\\
D\left(A_{1}\right)=\left\{f \in X_{0} ; \exists f_{x}, f_{v}, v f_{x}+\frac{w-v}{T} f_{v} \in X_{0}\right\}
\end{array}\right.
$$

