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l. Introduction.

In this note we are examining again the mode1 proposed by S. Paveri-Fontana

in(SJ and studied in various papers, in particu1ar [1) and (2].

The prob1em of evolution, connected with sl./cha mode1 is
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where, if f = f(x,v,w),
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The meani ng of the symbo l s can be found l n [SJ ' [lJ and [2]. In [2], the

prob1em (l) is studied

and bounded functions

when u be10ngs to the space of the uniform1y continuous
3X =U.C.B.(R) and the existence and uniqueness of the

10ca1 (in time) stria solution is proved. Noted that u = u(x,v,w;t) lS a car

density and that
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glVes the tota1 number of cars on the motorwòy at the time t, the most natural

space to study the prob1em (l) is L
1

(R
3

). In [lJ , mollifying the non-linear part

of the equation, i.e. F, we obtainedthe existence and uniqueness of the global
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strictsolution. Mo11ifyng, in our case, means rep1acing F with
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The aim of this work is to study the origina1 prob1em, i .e.(l) , ln L1 and

to find the connexion between the solution u(t) of (1) and the solution

u (t) of the mo11ified prob1em.
e

Precisely we prove that if Uo
ln 00

€ L L then (1) has a unique loca l "mild"

solution, i.e. the integra1 version of (1) has a unique local solution. If

[D,t] is the existence time interva1 of such solution u(t), we have

1im Ilu (t) - u(tHI = O
e:-+o+ e:

uniformlyrespectto t inCO,t). 11·11 lstheusualnormin L1.

We sha11 use the we11-known resu1ts of 1inear semigroup theory for which we

refer to [4J Chapter 9. For the results on the non 1inear evo1ution equations

(in particular for semi-1inear ones) we refer to [3],[6] and [8J.

2. THE A8STRACT PROBLEM.

Denote x = (f =f(x,v,w);
1 2-

feL (R xV)} and Xo =(f;feX, f(x,v,x) = O a.e. if

vé V} Xo is a c10sed subspace of X and we use it to get the third relation

ln (1).
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