1. Introduction.

In this note we are examining again the model proposed by S. Paveri-Fontana

in[S] and studied in various papers, in particular [T] and fZI.
The problem of evolution, connected with sucha model is

3 3 d W-v

{ Prouh _EE)U t— ( —ﬁr-u) = F(u) xeR3t>0; v,we(v],vz) =V
(05y1<v2i+m}
(1) U(X,V,aW30) = Ug(X,V,W) xeR3v,weV
u(x,v,wst) =0 tzO;xeR;v,wéﬁ
where, if f = f(x,v,W),
(2) F(f) = q[(3,F)=(3,F) - f Jsd]f] q constant in [0,1]
V2
J]f =, f(x,v,w') dw'
Vi
Vo
Jf = [ (v -v)f(x,v',w) dv'
v
v
VA [7 (v=v")F(x,v',w) dv'

v
The meaning of the symbols can be found in [5] ,[1] and [2]. In [2], the
problem (1) is studied when u belongs to the space of the uniformly continuous
and bounded functions X =IJ.C.B.(R3) and the existence and uniqueness of the
local (in time) strict solution is proved. Noted that u = u(x,v,w3t) 1is a car

density and that

o0 ¥, v
[ dx [ ay f u(x,v,w;t)dt
eV vy
gives the total number of cars on the motorwgy at the time t, the most natural
space to study the problem (1) is Ll(Rs). In [1] , mollifying the non-linear part

of the equation, i.e. F, we obtainedthe existence and uniqueness of the global
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strictsolution. Mollifyng, in our case, means replacing F with
(3) F_(F)(xsvow) = q[K (3,9)(3,f) - f K J,0,f]

2

where

(4) (K f )(x,v,w) = f+m k (x"-x)f(x',v,w)dx’
£ X £

and

o0

(5) k el (0,4=)5 k (y) > 03 k (y) =0 if y & (0,¢); [ k(y)dy =1
0

E
The aim of this work is to study the original problem, i.e.{1) , in L] and
to find the connexion between the solution u(t) of (1) and the solution

ug(t) of the mollified problem.

Precisely we prove that if wu, € Llf‘ L™ then (1) has a unique local "mild"
solution, i.e. the integral version of (1) has a unique local solution. If

[0,t] is the existence time interval of such solution wu(t), we have

Tim  [u_(t) - u(t)[| =0

e>o+ €
uniformiy respect to t in [0,t]. ||+|| is the usual norm in L].

We shall use the well-known results of linear semigroup theory for which we
refer to [4] Chapter 9. For the results @n the non linear evolution equations

(in particular for semi-linear ones) we refer to [3],[6] and [8].

2. THE ABSTRACT PROBLEM.

Denote X = {f =Ff(x,v,W); feL](szU)} and X, ={f;feX, f(x,v,x) =0 a.e. if

vég VI X, 1is a closed subspace of X and we use it to get the third relation

—|—

_ _ Wy
A] f=v fx T fV +

- W-v
D(AT) = {feXys :jfx,Fv, v fx + —Tr-fv e X}



where fx = ~3£-, f = —%{- are distributional derivatives.

X v

If we consider the linear homogeneous problem connected with (1) and use the

method of characteristics, we have

(7) u(x,v,w;t) = exp %-uo (i(t), Q(t),w)

where
i(t) = X(X,V,W3t) = x-wt+(w-v)T(exp % - 1)
Q(t) = Q(x,w;t) = W -(w=v) exp %

If we denote

(8) :?(t)fj (xsv,w) = exp = f(x(t),v(t),w) teR

then we have as in [1

Lemma (1) . (a) {Z(t); teRiez B(X); (b)*(Z(t)f!|{=]|F]|]
for feX; (c) (Z(t); teR} is a group.

If Z,(t) 1is the restriction of Z(t) to the subspace X_,, Z,(t) maps X,
into itself for t >0 and we have
Lemma (2). (a) {Z,(t); t > 0} & B(X,) and is a semigroup

(b) |1Zo(t)fi =[|f]., for feXqs (c) Zo(t) is strougly continuous in t for t>0

[f we denote by A, the infinitesimal generator of Z,(t) ([41) Chapeter 9) 1t

is easy to prove that A] is the restriction of A, to the set D(A]) c D(A.)

and that Zo(t)]:D(AT}I c D(A)) (see .
The natural domain of F s
D(F) = {f : feX, , F(f)eX

and because this is not the whole X, it is useful to introduce the following sets
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s(r) = (f:feX, N X_ 5 [If[]_<r)

where r is a positive constant and

2
||fl|eo = ess sup {|f(x,v,x)| : (X,v,w) € R~ x V}.

We have

Lenma (3). (a) X,MX_ &D(F); (B)[IF(F)1 < qd[|f]] |Ifl]

if fexo"xm, where d = (vz-v1)3; (c) s(r) is closed in X, .

PROOF .

(a),(b): If fe)(o'“)(oo and vgé V then F(f)(x,v,w) =0 a.e.

(c) If we suppose that fne s(r),

Iifn-f > 0 as n->« , but f ¢ s(r), then we obtain a contradiction

Remark (1). It is useful to introduce s(r) because X, X is not ciosed

in X

Q"

With the preceding notation, the problem (1) assumes the abstract form

du . s -
(9) Jt - Aju(t) + F(u(t)) t=>0; llg+u(t) = U.eD(A,)
where u : [0,+~) = X, and —%{ is a strong derivative . The integral version
of the problem (9) is
t
10) u(t) = u1(t) + [ Zo(t-s)F(u(s)) ds t >0
0
where
(1) u, (L) = Z,(t)u,
and from (b) of Lemma (2) l1u1(t)} = | Uyl

Every solution of (9) is also a solution of (10), but the converse 15 not
generally true. For this reason every soiution of (10) is said to be a "mild"

solution of (9) (see [3]).



3. Local mild solution.

In order to prove that (10) has a unique local solution, we consider the
space Y = C([0,t], Xo) with the usual norm [|usY|| = max{||u(t)|],te[0,t]}

and the non linear operator:

(12) [P(u)](t) = u](t) + } Z,(t-s) F(u(s))ds D(P) c Y .
Then the equation (10) gecomes

(13) u= P(u)

As  D(F) # X, also D(P) is different from Y and so it is natural to
introduce the following sets:
Y_=c(fo,t] 5 %M x ) and

<r for te [0,t]t.

[=-]

S(r) = tfeY_:||f(t)]|
S(r) is a closed subset of Y.
We propose to prove that if uoexoﬁxm and r>}|u0||co then P maps S(r)

into itself and is strictly contractive over S(r). So we will be able to assert

the existence of a unique soluction.
We will need the following lemmas.

Lemma (4). If X! = L'(R x ¥°) and X! =L (R x %) then

D dy,d,,d, d

! M '
129,093 9, € B(X]) B(X; ) and

. . , 2 d -
9 FI < e HIFIL 5 (10,FH < €/l IFIL 5 11950, F1] < 5 [IF]]

. , 2 \ , d ‘
L FHT = e IF iy s HI,FH = <7 /alIflT, s 150, FLl, = 5 HIfT
where ¢ = VE_VT'
PROOF .

If follows easily from the definitions B
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Lemma (5). F s a locally Lipschitz operator over X,M X and satisfies

the following inequalities:
(@) [IF(F) - F@) ] <d (LIFI[ gl [If-gll
(b) [[F(F)]_ < d [If ]

_PROOF _

If f,geX, M X then f,ge X;NX'_ and we can consider the operators J
(that define F) as operators over X, and X' . So using lemma (4) the result

follows from the following inequalities

LF(F) - F(a) ]

I A

[19,F - 3,(F-g) [+ 19, (f-9) - d,q][+[]gdzd, (f-g)[] +

¢ Hg-F)dgd Fl | 19,001+ el 119,9,(F-a) |+

[ A

19,7115 119,(F-a) [+ 19, (F-g)

+||g-f

| .

39, F1 | E

Lemma (6). (a) If g e Y with [lg(s)|]_ < a(s) fors e[0,t] and a(s) is

continuous then

t t
|| [ g(s)ds||_ =< j a(s)ds for te[0,t]
0 0
t/r "
(b)  [Z(E)F[] = e [If ]I, for feX,MX_ and t >0
PROOF
t
The integral B(t) = [ g(s)ds 1is a strong Riemann integral in X, and
0

so it is the strong limit of the corresponding Riemann sums:

2N -
B = i3 0505 7 Sn,ia) 9 (5 ) =123,
n n
where s ;= t/2 i=1,2,...,2
S . < g < S
n,i=-1 = n,i — "n,i



Now note that

n

N I TR B P

]

t
‘i) if a(s)ds
0

if we choose the §n ; SO that

]

a(sn,i) = min{a(s); Sn,i-] <s < Sn,i}
t
The assertion now follows because s(f a(s)ds) is closed in X,.
0

(b) follows from the definition of Z,(t).

Lemma (7). If u,eX,MX and r> [|u,||_then:

() Y_ cD(P)

(b) [H(Pu)(E)]] 5.c1(E)r for u e S(r) where
t
CI(E) = ﬂ%l—lm + (1+d r T)(e /1. 1)

(c) |IP(u) - P(w); Y]|< cz(f)[|u-w;Y[] for u,weS(r) where cz(E) =2drt.

PROOF

(a) If u.eX,MX then wu.e Y and from Temma (5) it follows that F(u)eY

1

ueY .

oo

So Puel.

(b) If u e S(r) we have, by Lemmas (5) and (6)

t t

t
<o Tugl + d riT(e /T 1) < [uol] (i luol|_+d r'Ty(e /T

| [P(u)(t)]]

oo

(c) follows directly from (a) of Lemma (5) and from (b) of Lemma (2).

if

_])

THEOREM (1). If u.eX,MX_and r > ||us||_ then the equation (13) has a
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unique Tocal solution u e S(r) cV_ .

PROOF.If c¢(t) = max {c (€), CZ(E)} then vcan choose € so that c(E) < 1.

Then, Lemma (7) shows that P maps S(r) into it-self and that P 1is strictly

contractive over S(r).

Remark (2). The nonlinear operator F 1is not Fréchet differentiable,
contrary to what happens in the papers [1] and [2], where this fact allowed

the assertion that the mild solution was also the strict solution of the problem
(see [6]).

The results are so different because in paper [1] the operator F is mollified
. 3
and in paper [2] we used the space X = U.C.B.(R”) and
X, =(F:FfeX, fx,v,w) =0 if (v,u)g V%)

4. Positivity of the solution.

In this section we propose to prove that the solution of the problem (13) is
positive if the initial condition u, 1s positive.

This result is important from a physical point of view, since u(x,v,w;t)dxdvdw
gives the expected number of vehicles that, at time t, have (i) position between
X and x+dx

(i1) speed between v and v4dv, (iii) desired speed between w and w+dw.

Introduce the following closed positive cones:

><
1l

o = (f e X, : f(x,v,w) >0 for a.e. (x,v,w) € R x Vz}

{fueY :u(t) e X: for te [O,E]}

—<
1}

and the relatively closed subsets:
+

sT(r) = s(r)Nx;

sT(ry = s(ryN v,

Moreover define:
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Note that Z,(t) [X:]c'xj but F does not map D(F)f\XI into X: . If this last
condition was satisfied it would easily follow that wu(-) € S+(r) locally,

when uoex:f\xm and r > ||u.|| .

In order to prove that the solution is positive it is sufficient to prove
that:

(14) thereexists a > 0 such that F](u) =(a I+ F)(u)e X: for U€S+(r) and

that if we define

T(t) = e " Zy(t) and

(P]g)(t) = T(t)uo + I T(t_S)F](g(S))dS
0

(15) P] maps S(r) into itself.
These sufficient conditions are in [7], but for the reader's convenience we
prove them in the appendix and we seize the opportunity to generalize some results.
Hence we have

Lemma (8). The assertions (14) and (15) are true.

PROOF

au + F(u) = q J]u,Jzu + (a-g J3J1u)u, so if ue s+(r) in order to prove
au+F(u) >0 a.e. it is sufficient to prove gq J3 J1u < a. Note thel
q Jgdu < |full_ g q<r %-q for u e s(r) so the condition (14) follows
if we take a>r 3 q.
To prove the condition (15) we put b = % - a then, ifgeS(r), we have

bt 2t b(t-s)
P, (0], < e [luol] +dr” [ ES)g
0

and thus
P ()], < c'(B)r
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if b#0

r

o[l , ( LYol e
. { (A b+dr)
Qolle 4 ¢ r t if b=0
"

In each case we can have c'(t) <1 provided r > ||uo|]e-

Hence we can conclude with the following

THEOREM (2). If wu_e X:"‘Xoo and  r > ||u,||, then the equation (13) has a
unique Jocal solution u e S+(r).

Remark (3)For fixed t and r = ||u,||, we can always choose a so as

P] maps S(r) into itself. In fact if geS(r) we have

[1P,9)(6) [ < v + r(brdr) —S"1 for te [0,1]
and so

[1(Py9) ()], < for te [0,t]
when

b+dr‘i 0 , 1.e. a > %-+ dr

Neverthelessthis result does not enable us to improve theorem (2) by removing
the condition r > ||u,||ws because it was used in theorem (1), from which the

theorem (2) comes.

In other words given [0,t] and r = ||ug||., P, maps S(r) into itself

1

but P] can be noncontractive.

5. Global mild solution.

As in [1] we introduce the functional

+co +w Vv
Jf=[dx | dv [
- v

- o0 1

2
f(x,v,w)dw for feX.

We have:
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Lemma (9). (a) {Jf] < ||f ]| and so J e X" = B(X;R)

(b) J Z,(t)f = J f for f eX, and t >0

(c) J F(f) =0 for f e X, X_ .

Applying the functional J to (10) we have
Ju(t) = J ug for te [0,]
+
and because the solution is positive if u.€eX, ﬁ)(m

we have

(16)  |fu(t)]] = |lu,]] for te [0,t] .

The physical meaning of this result is the invariability of the total number
of the vehicles on the motorway with respect to the time. This is natural because
the motorway is supposed to have no entrances or exits.

This fact allowed us to obtain the global solution in [1], but here we need

information about ||u(t}!|. and not about |ju(t)|].

We can prove that P is strictly contractive over 5(r) also with respect to the norm

|1-]] , using the inequalities

3
HFCF) - Pl < S5l Iel] +l sl ) Hf-gll, for f,gex,nX_ and for u,ueS(r)

HIP(u)-P(w) || <[ lu-w]] (c3+d)r T(et/T—l). Then by well-known techniques(see e.g.

8] pag. 48) we can obtain that
2
Hu(t)]], « —ellae - for  te [0,
1-d T {uolle (e7/T -1y

provided that

t
e /Mo .V
d Tl ]uo]

|
l o

+ 1 and [us]] #0 .

From this last inequality it is clear that the time interval [O,%] will 1increase

when |]u0H00 decreases.

This result is also justified from the physical point of view,because once the are more
than a suitable number of vehicles at each point of the motorway there will

be a traffic jam.

In particular for [lu,|{| =0 (i.e. ug(x,v,w) =0 a.e.) we have the
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global solution (i.e. for t €[0,=))

6. Connexion with the mollified problem.

As we said in the introduction, the mollified version of the problem (1) has
a unique strict global solution uE(t) and if uoexif\xw we have

t
u€(t) = Z(thu, + [ Z,(t-s) FE(uE(s))ds for t >0
0

If [0,t] is the existence interval for the solution of the problem (13), we
have for t e [0,t]:

t
(17) 1lu_(t) = u(t) || < J [IF_(u(s)) - F(u(s))]|ds.
0

The aim of this section is to prove the following

THEOREM (3). If uoexjfﬁxw, u(t) 1is the mild solution of the problem (1) in
the interval [O,E] and ue(t) is the strict global solution of the mollified

version of the problem (1), then we have

(18) 1im, [Ju_(t)-u(t)|] =0 uniformly in t e[0,t] .

PROOF

If f,ge Xon)(m then

(19) IF_ (f) = F(@) || < |IF_(F) - F_(9)]1+]IF_(9)-F(a)|| < 28([[f]] +
sl D1IF-gl| + [IF_(9)-F(9)]

where & = (v,-v,) !|k€||cc (see [1]).

Since we proved that the norm of the solution is invariable both in [1] and in this

paper (see (16)), we have
Hu (1 = THusll = [u(t)]] for t e[0,t]

and then, from (17) and (19)
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t t
u_(t) = u(®)[| < [ [IF_(u(s)) - F(u(s))|[ds+as|uo]|[|]u_(s)-u(s)]]ds.
0 0

If we suppose that we have proved that

t
(20) lim, é ]|F€(u(s))-F(u(s))|]ds =0 uniformly in te[0,t],

and n > 0 1is given, then a suitable § >0 can be found such that

t
[Hug(8) = u(0) ] <n+ 86 [ugl] [ I]u(s)-u(s)] fas

for each e €(0,6) and for te [0,t]. Hence
|IUE(t) -u(t)|] <n e46[|u°||t for t e [O,t]

by Gronwall's Lemma. So the theorem is proved as soon as we have proved (20).

Define, for brevity

fle,s) = [IF_(u(s)) - F(u(s))]]

and note that f(e,+) is continuous because F, (<), F(-) and u(¢) are continuous.

By Lebesgue's bounded convergence theorem to prove (20) it is sufficient to prove

(21) lim f(e,s) =0 for s e[0,t]
(22) f(e,s) < g(s) for s e[0,t], e >0

where g(s) 1is a summable function independent of . We will prove (21) and

(22) with the help of some lemmas. But first note that

(23) F_(9) - F(g) = a[(K_-1)d;99,9 - g(K_-1)J,d,9]

€

() Ke BOX,) 5 [IK[] <

(b) 1im, ||K f - f|| = 0 for fe X
>0t £
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PROOF
to oV, too 4w
(@) [IKf|l < fdv [ dw f dx [ k (x'-x)[f(x',v,w)|dx' =
£ o Vl e X 4
teo Y x'

= Jav aw [ ek F(x v |k (xxgdx =] £]]

- \ 1 -0 -

X' 4o
because f ks(x‘—x)dx = [ kE(y)dy =]
-c 0
(b) ||K€f-f[| = || fdx! ka(x'-x)[f(x',v,w)-f(x,v,w)]!] =

X
E

= |1 [ dy k_(y) [Fx+y,vw)-F(x,v,w)] | |< fdy k () HF(xtysy,w)-F(x,vw) [ ]
0 (¢]

Since f e X, we have }1@ | |[f(x+y,v,w)-f(x,v,w)|| = 0 and because y -~ 0 as
e - o+ the thesis follows. l
COROLLARY (1). If g e X,NX_ then:

(a) [IF_(9) - F(a)I] < 2d [[gll| [lgll,

(b) 1im,|IF_(9) - F(g)]| = O

£7F0

PROOF

(a) By (a) of Lemma (10) we have [|k8-1|[-5 2 and by (23)

1 F_(9) - F(o)I| < 2(119,90,0] 1+ [l | 1950,01]).

Now the assertion follows by Lemma (4).

(b) Define 9y = J1gJ29 > 9, = J3J1g then note that

by (23) and finally the assertion follows by (b) of Lemma (10).
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Now, if u,eXMX_ then u(s) e X,MX_ for s e[0,t] and (21) follows by

(b} of Corollary (1). By the results of § 5, the e exists M-> 0 such that
[|u(s)||°° <M for se [O,E] and (22) follows by (a) of Corollary (1)

APPENDIX

Let X be a real Banach space and in this space consider the semi-linear

problem

(A1) §%~ = A u+ F(u) u(0) = u, € D(A)

where A is linear and generates the semigroup Z(t) while F 1is non linear
but at least continuous. The integral version of (A1) is the equation

t
(A2) u(t) = Z(t)u, + [ Z(t-s)F(u(s))ds.
0

A solution of (A2) 1is called a mild solution of (A1) but as we know it is
not in general a strict solution of (Al1). On the cther hand a solution

of (A1) is also a solution of (A2).

Under suitable conditionssuch as the F- réchet-differentiablity of F and the
continuity of the derivative a solution of (A2) with u,eD(A) is also a solution
of (A1) (see [6]).

Let ¢ be a closed come of X, i.e. ¢ is a closed subset of X that
satisfies the condition
X,y € ¢ , a>0=>x+yec, a X &€ C .

If we set

Y = C([0,t]; X) , C ={ueY;u(t)ec for t e [0,t]} s a closed subset of

X contained in D(F)

s' =sMc¢

S = {ueY; u(t)es for te [0,t])
s'=sN ¢

(P u)(t) = Z(t)u, + | Z(t-s)F(u(s))ds

Q ¢+
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we have the following

PROPOSITION, If

(a) u,e€s

(b) Z2(t) uec for uec
(c) F(u) e c for ues'
(d)

P:S~>S and is strictly contractive then the unique solution u of

u =P ubelongs to S'.

PROOF

The hypothesis ensure that P : S'= S' and so wueS' when (c) is not

satisfied the follwing is useful.

THEOREM. With the same hypothesis (@), (b)sd (d) of the preceding proposition,if

(c') a >0 exists such that F1(u) ec for ues' where Fl =F+al

(d') If we set ¢

(PyV)(t) = T(t)us + [ T(t-s)F
0
where  T(t) = e 2% 7(t), P

L(v(s))ds

1 maps S into itself, then we have the same con-

clusion of the preceding proposition, for a suitable t.

In order to prove the theorem define the linear operator

t

(Zu)(t) = a [ Z(t-s)u(s)ds for ue Y and prove the following.
0

LEMMA. Z e B(Y) and for a suitable t the operator I +.& is invertible.

The operators P and P1 are connected by the following equality

(A3) Py = (1 +Z ) (P 2)

PROOF . ¢

(-a) fPZ(t't')(p1U)(t')dt' = (-a) | Qa(t-t!
° 0

T(t-t1)-
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ti
BTt )ug + [ T(t'-s) F (u(s))ds]dt" =
t a ?:-t' t
= (-a) [ e ( ) [T(t)u, + T(t-s)F1(u(s))ds]dt‘ =
0] 0
t
= 1= @Y Tug + f 0 - Y (00 (u(s))ds =
0
t
= Pu - [Z(t)u, + [ Z(t-s)(F(u(s)) + a u(s))ds]
0
So
t
(Pu)(t) = Z(t)uo+f Z(t-s){F(u(s))+afu(s)-P (u(s))]}ds
0
and then
t
(Pyu)(t) = (Pu)(t)+a fZ(t-s)[u(s)-P](u(s))]ds
0
1.e.
(A4) P.u =P u+Z -(u-P,u).

1 1

By last equality we have:
(A5) (I+ £ ) P]u = (P+3)u .
Note that if ||Z(t)|| €M ebt it follows that

aMt if b=20
1|2 |] i{ bt . It jis clear that this quantity is less
a M if b#0

than 1 for a suitable t and thus I + % 1is invertible . So the assertion

is  true.
7]

REMARK (A1). (A4) and (A5) are valid in [0,t] for every t, while (A3) is
valid just for a suitable t (such that |[Z]| <1).

COROLLARY (a) If wu is a solution of u =Pu in [0,t'] then u is also
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solution of u = Pu in the same interval. (b) If P 1is contractive then so

is P1 but in general not for the same t.The converse is also true()If u

is a solution of u = Pu in [Q,E] then it is also solution of wu = P]u but,
in general, in a smaller interval.
PROOF

(a) follows by (A4) and by remark (Al)
(b) By the lemma it follows that

where ||<|| is the usual seminorm defined for Lipschitz operators

]|T§:1vEIP(V)iI; u,v € D(P)}).

(i.e. [IP]] = sup {

We have || P]}| <1 4f ||P|| +2 || Z|| <1 and this is true for a suitable t.
The inverse follows by (A4); in fact

[P < [T+ Z ]

P I+ (12 1]
(c) follows by (A3) and by remark (Al)

PROOF OF THEOREM.

By hypothesis and by the Corollary it follows that

(b") T(t) uec ifuec
(c") F](u) € C if ues'
(d'") P, maps S into itself and is strictly contractive, so by the Proposition

1
it follows that a unique solution u of u = Pu exists for a suitable t and

it belongs to S$°'.

Remark (A2)

The preceding results are especially useful in the cases where the mild solution
is not in general the strict solution. Otherwise the preceding result is trivial

because the problems



gi =Au+ F(u) ; u(0) = u, and
dv ~
e (A-al)v + F.I(V) vie) = u,
coincide.
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