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1. Introduction.

In this note we are examlnlng again the mode1 proposed by S. Paveri-Fontana

in[SJ and studied in various papers, in particu1ar [1) and (2].

The prob1em of evo1ution, connected with sl./cha mode1 is

(1 )

d d d w-vat- + v -ax)u + -av ( -r- u) = F(u)

u(x,v,w;O) = u.(x,v,w)

u(x,v,w;t) = O

xeR;t>O; v,we(v
1

,v
2

) = V

( O~.v1<v2<+o> ì
xeR;v,weV

t~O;xeR;v,w~V

where, if f = f(x,v,w),

q constant i n [O, 1J

v2
J

1
f = J f(x,v,w') dw'

v j

v2J/ = I (v'-v)f(x,v' ,w) dv'
v

I
vJ/ = (v-v' )f(x,v' ,w) dv' .

v'

The meani ng of the symbo1s can be found i n [SJ ' [lJ and [2]. In [2], the

prob1em (1) is studied

and bounded functions

when u be10ngs to the space of the uniform1y continuous
3

X =U.C.B.(R) and the existence and uniqueness of the

local (in time) stria solution is proved. Noted that u = u(x,v,w;t) is a car

density and that

+<o V2
I dx I dv

-00 Vl

V2f u(x,v,w;t)dt
vI

gives the total number of cars on the motorwòy at the time t, the most natural

space to study the prob1em (l) is L
1

(R
3

). In [lJ , mollifying the non-linear part

of the equation, i.e. F, we obtainedthe existence and uniqueness of the global
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strictsolution. Mo1lifyng, in our case, means rep1acing F with

where

(4)

and

(K f )(x,v,w)
e

+00
= J k (x' -x) f (x o ,v, w) dx '

x e

(5) k eLoo(O,+oo); k (y) > O; k (y) = O if y , (D,e); J kly)dy = 1 .
E E - E ~o

The aim of this work is to study the origina1 prob1em, i .e.(l) , in L1 and

to find the connexion between the solution u(t) of (1) and the solution

u (t) of the mo11ified prob1em.
e

1n 00

Prec i se ly we prove tha t i f Uo e L L then (1) has a uni que 1oca l "mil d"

solution, i.e. the integra1 version of (1) has a unique local solution. If

[D,t] is the existence time interva1 of such solution u(t), we have

1im Ilu (t) - u(tHI = O
e:-+o+ e:

uniformly respect to t in [D,t). 11·11 is the usual norm in L1.

We sha11 use the we11-known resu1ts of 1inear semigroup theory for which we

refer to [4J Chapter 9. For the results on the non 1inear evo1ution equations

(in particular for semi-1inear ones) we refer to [3],[6] and [8J.

2. THE ABSTRACT PROBLEM.

Denote
1 2-

X = (f =f(x,v,w); feL (R xV)} and Xo =(f;feX, f(x,v,x) = O a.e. if

vé V} Xo is a c10sed subspace of X and we use it to get the third relation

in (1).

Defi ne

Al f = v f
x

- w-v f + ~ f
T v T

(6 )
""] w-v= {feXo ; ~f ,f , v f + ---T f e Xo}

x v x v



where
af

f =-x ax

- '+ -

f =~ are distributional derivati ves.
v av

If we consider the linear homogeneous problem connected with (l) and use the

method of characteristics, we havé

(7)

where

t - ­
u(x,v,w;t) = exp T Uo (x(t), v(t),w)

x(t) = x(x,v,w;t)

vItI

t
= x-wt+(w-v)T(exp T - l)

t
= v(x,w;t) = w -(w-v) exp T

If we denote

(8) =l(t)f] (x,v,w) = exp i f(x(t),v(t),w)

then we have as i n [1~ .

teR

Lemma (l) . (a) {l(t); teR}C ~(X); (b)'ll(t)f'I=llfli

for feX; (c) {l(t); teR) is a group.

If lo(t) i s the restriction of l(t) to the subspace Xo' lo(t) maps Xo

into itself for t > a and we have-

Lemma (2). (a) {lo(t); t.:: al c. iIl(Xo) and is a semigroup

(b) Illo(t)fl =Il fl , for feX o; (c) lo(t) is strougly continuous in t for t >ù

If we denote by Ao the infinitesimal generator of lo(t) ([41) Chapeter 9) ,t

is easy to prove that Al is the restriction of Ao to the set D(Al ) c D(A_i

and that lo(t)[D(A1J1 c D(Al ) (see [lJ).

The natural domain of F is

D(F) = {f f e Xo F(f) e Xo

and because this is not the whole Xo it is useful to introduce the following sets
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s(r) = If:feX o lì X ; Ilfll < r}
= =-

where r

Il fii
=

We have

is a positive constant and

z
= ess sup {If(x,v,x) I : (x,v,w) e R x V}.

Lemma (3) . (a) Xo (' X C D(F) ; (b) Il F(f) I I < q dii f Il Il f Il
= - =

if feX o (") X=' where d = (vZ-v
l

)3; (c) s(r) is closed in Xo .

PROOF.

(a).(b): If feX o '"I X and
=

v~ V then F(f)(x,v,w) = O a.e.

(c) If we suppose that f e s(r),
n

l'f -f + O as n + = ,but f t s(r), then we obtain a contradiction
n •Rema rk (l). I t i 5 usefu 1 to introduce s (r) because X r"\ X

o = is not ciosed

With the preceding notation, the problem (l) assumes the abstract form

(9 )
du
dt = Aou(t) + F(u(t)) t>O; lim u(t) = uoeD(AoJ

t->()+

where and
d

dt
is a stron9 derivative . The integrai verSlon

of the prob l em (9) i s

! 10)

where

( l l )

t
u(t) = ul(t) + f Zo(t-s)F(u(s)) ds

o
t > O

a nd from (b) of Lemma (2) I Iul ( t) I = I I Uo I

Every solution of (9) is also a solution of (10), but the converse ;5 not

generally true. For this reason every solution of (lO) is said to be a "mild"

solution of (9) (see [3J).
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3. Local mild solution.

In order to prove that (lO) has a unique local solution, we consider the

space Y = C([O,t], Xo) with the usual norm Ilu;YII = maxillu(t)ll,te[O,t]l

and the non linear operator:
t

(12) [P(u}](t) = ul(t) + f Zo(t-s} F(u(s))ds
o

Then the equation (lO) becomes

D(P)cY.

(13 ) u = P(u)

As D(F) F Xo also D(P) is different from Y and so it is natural to

introduce the following sets:

Y = C( [O, tl ; Xo r"\ X ) and
~ ~

S(r}=ifeY:llf(t}11 <r for te [O,t]l.
~ ~ -

S(r) is a closed subset of Y.

We propose to prove that i f uoeXo il X and r> Il UoIl then P maps S( r I
~ ~

into itself and is strictly contractive over S(r}. So we will be able to assert

the existence of a unique soluction.

We will need the following lemmas.

l -2 ~-2
Lemma (4). If X~ = L (R x V) and X' = L (R x V) then

~

J l ,J
2
,J

3
J
l

e B()(~} n B()(~) and

iI J /:I'::C
2
/2 1 I f ll

PROOF.

If follows easily from the definitions •
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Lemma (5). F is a locally Lipschitz

the following inequalities:

operator over Xo () X and satisfies
w

(a) IIF(f) - F(g)11 < d (11fll Ilgll 11f-g11- ~ ~

2
(b) IIF(f)11 < d Ilf Il .

~ - ~

PROOF

If f,g e

(tha t defi ne

Xo () X then f,g e X~ ()X' and we can consider the operators J
~ ~

F) as operators over X~ and X' . So using lemma (4) the resu1t
~

fo110ws from the fo110wing inequa1ities

Ilf(f) - F(g) Il < IIJ,t . J2(f-g) 1I+IIJ1(f-g) . J2gll+lIgJ3J1 (f-g) Il +

+ t Kg-f)J 3J,t1I < IIJ,tIIJIJ2(f-g)II+IIJ1(f-g)II'IIJ2gll~+ Ilgll,;,lIJ3J 1(f-g)ll+

•
Lemma (6). (a) If 9 e Y wi th Ilg(s) Il < ,,(s) for s e [O, t] and ,,(s) i s

~ ~ -
continuous then

t t
Il f g(s)dsll < j ,,(s)ds for te[O,t)

~ -
o o

(b) IIZo(t)fll = et/T Il f Il for feX o () X and t > O
~ ~ ~ -

PROOF

The i ntegra l
t

S(t) = f g(s)ds is a strong Riemann integra1 in Xo and
o

so it is the strong 1imit of the corresponding Riemann sums:

2n
B = .E

1
(S . - s . l) 9 (s .)

n 1; n,l n,l- n,l
n=1,2,3, ...

Ivhere s . =
n,l

s . l < S . < S .n,l- - n,l - n,l

n
::; 1,2, ... ,2
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Now note tha t

2n

Ii sii <.E(S .n 00-1=1 n,l

t
- S . l)a(s .) < I a(s)ds

n 1- n 1 -, 'o

if we choose the s . so thatn,l

a(s .)=min{a(s);s 'l<S<S .ln,l n,1- - - n,l

t
The assertion now fol10ws because s(l a(s)ds)

o
(b) fo110ws from the definition of Zo(t).

is closed in Xo'

•
(a) Y c D( P)00

(b) Il (Pu)(t) 11 00 2. cl (t)r for u e S(r) where
-

cl (t) ~~ + (l+d
ti

= r T)( e T_ 1)r

(c) IIP(u) - P(w); YII2. c2(t)llu-w;YII for u,weS(r) where c
2
(t) = 2 d r t

PROOF

(a) If

ueY .00

then u1e Y
oo

and from lemma (5) it fo11aws that F(u)eY if

So P u e Y.

(b) If u e S(r) we have, by' LemlJ\clS (5) and (6)

ti 2 ti 2 ti
IIP(u)(t)11 <e Tlluoll+drT(e T_ 1)<lluoll+(lluoll+drT)(e T_l)

00- 00 - co co

(c) fo110ws direct1y from (a) af Lemma (5) and fram (b) af Lemma (2).

THEOREM (1). If uoeX/\X and r >00
I

I IUol I then the equation (13) has a
~
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u e S(r) c Y .
~

we -PROOF.If c(~) = max {C1(t), c
2
(t)} then ~can choose t so that c(t) < 1.

Then, Lemma (7) shows that P maps S(r) into i~e1f and that P is strictly

contractive over S(r).

Remark (2). The non1inear operator F is not Fréchet differentiab1e,

contrary to what happens in the papers [1] and [2J, where this fact a110wed

thea5sertion that the mild solution was a1so the strict solution of the prob1em

(see [6)).

The resu1ts are so different because i n paper [lJ the operator F is moll ified

and in paper (2) we used 3 andthe space X = U.C.B.(R )

Xo ={f: f e X , f(x,v,w) = O if -2
(v,w)~ V }

4. Positivity of the solution.

In this section we propose to prove that the solution of the problem (13) is

positive if the initia1 condition Uo is positive.

This result is important from a physica1 point of view, since u(x,v,w;t)dxdvdw

gives the expected number of vehic1es that, at time t, have (i) position between

x and x+dx

(ii) speed between v and v+dv, (iii) desired speed between w and w+dw.

Introduce the fo11owing c10sed positive cones:

X~ = {f e Xo : f(x,v,w) ~ O -2for a.e. (x,v,w) e R x V }

Y+ += {u e Y : u(t) e Xo for t e [O, tJ )

and the
+s (r) =

+
S (r) =

relatively
+s(r) rìX o

S(r)" y+

closed subsets:

Moreover define:
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Note that Zo(t) [X:Jc: X: but F does not map D(F) nX: into X: . If this 1ast

condition was satisfied it wou1d easi1y fo110w that u(·) e S+(r) 10ca11y,
+when uoeXon X and r > Il UoIl .

~ w

In arder to prove that the solution is positive it is sufficient to prove

that:

(14) the~exists a > O such that F1(U) ~(a I + F)(u) e X: for ues+(r) and

that if we define

T(t) ~ e-atZo(t) and
t

(P1g)(t) ~ T(t)uo + J T(t-s)F1(g(s))ds
o

(15) P1 maps S(r) into itse1f.

These sufficient conditions are in [7J, but far the reader's convenience we

prove them in the appendi x and we seize the opportunity to genera1ize some resu1ts.

Hence we have

Lemma (8). The assertions (14) and (15) are true.

PROOF

au + F(u) ~ q J1U,J2u + (a-q J
3
J
1
u)u, +so if u e s (r) in order to prove

a u + F(u) ~ O a.e. it is sufficient to prove q J3 J1u 2 a. Note

d d
q J 3J1u ~ I lui I

w
2 q ~ r 2 q for u e s(r) so the condition (14) fo110ws

if we take a ~ r %q.

To prove the condition (15) we put lb ~ T - a then,

t
Iluoli + d r2 J eb(t-s)dS

w

o

and thus

IIP1g)(t)ll~ 5.. c '(t)r

ifgeS(r), we have
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where

__ {~r~ + (.lli!Jlr
o ~ b + d r)

c' (t)

llilk+ drt
r

In each case we can have c' (t) < 1 provided r > Iluoll w.

if b t O

if b; O

•Hence we can conclude with the fo110wing

THEOREM (2). If uoe x:nxw and r > Iluoll w then the equation (13) has a

unique 10ca1 solution +ueS(r).

for t e [O, t]

Remark (3)For fixed t and r; l luol Iw we can a1ways choose a so as

P1 maps S(r) into itse1f. In fact if geS(r) we have

e
bt

-l
b

and so

for t e [O, t)

b+dr < O , Le.

when
l

a ~ T+ dr .

Nevertheless this resu1t does not enable us to improve theorem (2) by rli!moving

the condition r > I IUol Iw, because it was used in theorem (1), from which the

theorem (2) comes.

In other words given [O,t) and r; lluoll w' P
l

maps S(r) into itse1f

but P
l

can be noncontractive.

5. Global mi1d solution.

As in [l) we introduce the functiona1

J f

We have:

+00 +00

; f dx f dv
v2

f f(x,v,w)dw
VI

for fe >C,
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Lemma (9). (a) !Jfi $. Ilf Il and so J e X* = B(X;R)

(b) J Zo(t)f = J f for f eXo and t> °
(c) J F(f) =° for f e Xon X .

~

Applying the functional J to (la) we have

Ju(t) = J Uo for t e [o,i]

and because the solution is positive if

we ha ve

(16) Ilu(t)11 = Iluoll for t e [O, tJ .

The phys i ca 1 meani ng of thi s result i s the i nvari abil ity of the tota l number'

of the vehicles on the motorway with respect to the time. This is natura l because

the motorway is supposed to have no entrances or exits.

This fact allowed us to obtain the global solution in

information about

We can prove that

I lu(t)! I~ and not about
p is strictly contractive

[lJ, but here we need

Ilu(t)ll·
ove r S(r) al so with respect to the norm

11·1 I ' using the inequalities
~ 3

IIF(f) - F(g) II~.::. c ;d( Ilfl Vllgi U Ilf-gll~ for f,geX."nx~ and for u,weS(r)

i IP(u)-P(w)1 I~.::.l lu-wl 1~(c3+d)r T(et/T_l). Then by well-known techniques(see e.g.

[8] pago 48) we can obtain that

~'" e
t
/T

Ilu(t)II~2. L<O.....:'--__-;;--_ for te [O,t)
l - d T Iluoll~ (e

t
/ T -l)

provided that

and

From this last inequality it is clear that the time interval [o,t] will increase

when Il UoIl ~ decreases.

This result is also justified from the physical point of view,because once the are more

than a suitable number of vehicles at each point of the motorway there will

be a traffic jam.

In particular for Iluoll~ = O (Le. uo(x,v,w) = ° a.e.) we ha ve the
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global solution (i.e. for t e[O,.)

6. Connexion with the mol1ified prob1em.

As we said in the introduction, the mol1ified version of the problem (l) has

a unique strict globa1 solution u (t) and if uoex~i")x we ha ve, . .
t

+ f Zo(t-s) F (u (s))ds
o ' ,

for t > °
If [D,t] is the existence interval for the solution of the prob1em (13), we

have for t e [O, tJ:

(17) Ilu (t) - u(t) Il
E

t
< (_ J

o
IIF (Lj, (5)) - F(u(s)) Ilds.

E ,

The aim of this section is to prove the fo110wing

THEOREM (3). If uoeX~i")X, u(t) is the mild solution of the problem (l) in
•

the interva1 [D,t] and u (t) is the strict globa1 solution of the mol1ified,
version of the prob1em (l), then we have

(18) lim Ilu (t)-u(t) Il = °
E-+o+ e:

PROOF

If f ,g e x)l X. then

uniform1YJn t e[O,t] .

(19 ) IIF (f) - F(g) Il < IIF (f) - F (g) II+IIF (g)-F(g) Il < 2o( Ilfll +
E - E E e: -

+llgll) 11f-g11 + IIF,(g)-F(g) Il

(see [1]).

Since we proved that the norm of the solution is invariable both in [lJ and in this

paper (see (16)), we have

Ilu (t)11 = Iluoll = Ilu(t)11
E

and then, from (17) and (19)

for t erO, t)



- 14 -

t
[Iu (t) - u(t)11 < f IIF (U(s))

E - E
O

t
- F(u(s))llds+4olluollfIIU (s)-u(s)llds.

e
O

(20 )

If we suppose that we have proved that

t
1im f IIF (u(s))-F(u(s))llds = O
E-+o+ E

o

and n > O is given, then a suitab1e

uniform1y i n te [O, tJ '

o > O can be found such that

t
Il u (t) - u(t) Il < n + 40 Il UO II J Il u (s) -u (s) Il ds

e - O e

for each e e(O,o) and for t e [O, t]. Hence

Ilu (t) - u(t)11 .::. n e4olluollt
e

for t e [O,t]

by Gronwa11 's Lemma. So the theorem is proved as soon as we have proved (20).

Define, for brevity

f(e,s) = I IF (u(s)) - F(u(s))1 I
e

and note that f(E,·) is continuous because ~ (.), F(·) and u(.) are continuous.

By Lebesgue's bounded convergence theorem to prove (20) it is sufficient to prove

(21 )

(22)

1im f(e,s) = D
e-+o+

f(e,s) .::. 9(S)

for s e[O,t]

for s erO,t], e > O

where g(s) is a summab1e function independent of e. We wi11 prove (21) and

(22) with the help of some 1emmas. But first note that

Lemma (10)

(a) K e B(Xo ) ,
e Il K Il < le

(b) 1im IIK f - fii = O
E::-+o+ E::

for f e Xo
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PROOF
+00 V2 +00 +co

(a) IIK/ Il 2. f dv f dw f dx f ks(x'-x) If(x' ,v,w) Idx' =
-00 VI -00 X

+00 v2 +00 X l

= Jdv J dw J dx' If(x' ,v,w) I J k (x'-x)dx =llfll
s

-00 Vl -00 _00

x'
because J k (x'-x)dx = J k (y)dy = l

s s
-00 o

+00

(b) IIK f-fll = I I Jdx' k (x'-x)[f(x' ,v,w)-f(x,v,w)] Il =
s x s

s s

= Il J dy ks(Y) [f(x+y,v,w)-f(x,v,w)] 112. JdY ks(Y) Ilf(x+y,y,w)-f(x,v,w) II·
o o

Since f e Xo we have 1im Ilf(x+y,v,w)-f(x,v,w) Il = O and because y ... O as
Y-+o

s ... 0+ the thesis fo11ows.

COROLLARY (1). If 9 e Xo nX
00

then:
•

(a) Il FE(g) - F(g) Il 2. 2d Il 9 Il Il 9Il 00

(b) 1im IIF (g) - F(g)11 = O
8-+0+ E.

PROOF

(a) By (a) of Lemma (10) we have IlkE-III 52 and by (23)

Il Fs(g) - F(g)II2.C(I;J19J2gll+llgIUIJ3J1gll).

Now the assertion fo11ows by Lemma (4).

by (23) and fina11y the assertion fo11ows by (b) of Lemma (10).

•
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Now, if uoex~nX~ then u(s) e Xonx~ for s e(O,t] and (21) follows by

(b) of Corollary (l). By the results of § 5, the e exists M-> O such that

Ilu(s)ll~ ~M for se [O,t] and (22) follows by (a) of Corollary (l)

•APPENDIX

Let X be areaI Banach space and in this space consider the semi-linear

problem

(A l )
du
~ = A u + F(u) u(D) = Uo e D(A)

where A is linear and generates the semigroup Z(t) while F is non linear

but at least continuous. The integraI version of (Al) is the equation

t
(A2) u(t) = Z(t)uo + r Z(t-s)F(u(s))ds.

o

A solution of (A2) is called a mild solution of (Al) but as we know it is

not in general a strict solution of (Al). On the cèher hand a solution

of (Al) is also a solution of (A2).

Under suitable conditions such as the F~ réchet-differentiabl ity of F and the

continuity of the derivative a solution of (A2) with uoeD(A) is also a solution

of (Al) (see [6]).
Let c be a closed corre of X, i.e. c is a closed subset of X that

satisnes the condition

x,y e c a ~ O ===> X + Y e c , a X e c .

If we set

Y = C([O,t); X) , C ={ueY;u(t)ec for t e (O,t])

X contained in D(F)

s' =snc

S = (ueY; u(t)es for t e [O,t)}

S' = Sn C t
(P u)(t) = Z(t)u o + J Z(t-s)F(u(s))ds

o

5 a closed subset of
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we have the fol1owing

PROPOSITION. If

(a) Uo€s'

(b) t(t) u € c for u € C

(c) F(u) € C for u € s'

(d) P S + Sand is strictly contractive then the unique solution u of

u = P u be10ngs to S'.

PROOF

The hypothesis ensure that P: S'-+ S' and so u e S' when (c) is not

satisfied the follwing is usefu1.

THEOREM. With the same hypothesi~ (a),(b)~(d) of the preceding proposition,if

(c') a > O exists such that F1(u) € c for u e s' where F1 = F + a I

(d') Ifweset

(P1v)(t) = T(t)u o

t
+ f T(t-s)F1(v(s))ds

o

where -atT(t) = e Z(t), P1 maps S into itse1f, then we have the same con-

(-a) ftea(t-t')T(t_t')'
o

c1usion of the preceding proposition, for a suitable t.

In order to prove the theorem define the 1inear operator

t

(Zu)(t) = a f Z(t-s)u(s)ds for u e Y and prove the following.
o

LEMMA. ~ € B(Y) and for a suitable t the operator I + Z is invertib1e.

The operators P and P1 are connected by the following equa1ity

(A3) Pl = (I + ~ ) - l (P+ ~)

PROOF.

(-a) ftZ(t-t')(P1U)(t')dt' =

o
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t'
.[T(t')uo + J T(t'-s) F,(U(S))dS]dt' =

t o t'
= (-a) J ea(t-t') [T(t)u o + j T(t-s)F,(u(s))ds]dt' =

o o
t

T(t)u o + j
o

[
a(t-s)], - e T(t-s)F,(u(S))dS =

t
= P,u - [Z(t)u o + J Z(t-s)(F(u(s)) + a u(s))ds]

o

So
t

(P,u)(t) = Z(t)uo+j Z(t-s){F(u(s))+a[u(s)-P,(u(s))}}ds
o

and then
t

(P,u)(t) = (Pu)(t)+a jZ(t-s)[u(s)-P,(u(s))]ds
o

i .e.

(A4) P,u = P u + ~ .(u-P,u).

By 'ast equa'ity we have:

(A5) ( 1+ )[) P, u = (P+'!) u

Note that if IIZ(t) Il ~ M e
bt

it follows that

a M t if b = O
111: II .::.( ebt_, . ]t is c,ear that this quantity is 'ess

laM b if b;tO

than , for a suitable t and thus I + Z; is invertib'e . So the assertion

is true.

REMARK (A'). (A4) and (A5) are valid in [O,t] for every t, whi'e (A3) is

va' id just for a suitab'e t (such that Il)511 <').

COROLLARY (a) If u is a so'ution of u = P,u in [O,t'] then u is a'so
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solution of u = Pu in the same interval. (b) If P is contractive then so

is P
l

but in general not for the same t.The converse is also true~IIf u

is a solution of u = Pu in [D,t] then it is also solution of u = Plu but,

ln genera l , in a smal1er interval.

PRDDF

(a) follows by (A4) and by remark (Al)

(b) By the lemma it follows that

where 11·1 I is the usual seminorm defined for Lipschitz operators

( i . e . II Pil = sup {-.lJP(u) - P(v) U. u v e D(P)}).
Ilu-vll "

Vie ha ve li pl Il < l i f Il pIl + 2 Il ~II <

The inverse follows by (A4); in fact

-
and this is true for a suitable t.

Il pIl ~ Il I + ~ 11·11 Plii + II~ Il

(c) follows by (A3) and by remark (Al)

PRDDF DF THEDREM.

By hypothesis and by the Corollary it follows that

(b') T(t) u e c if u e c

(c')Fl(u)ec if ues'

(d') Pl maps S into itself and is strictly contractive, so by the Proposition

it follows that a unique solution u of u = Pu exists for a suitable t and

i t be l ongs to S'.

Remark (A2)

The preceding results are especia]y useful in the cases where the mild solution

is not in general the strict solution. Dtherwise the preceding result is trivial

because the problems



du
dt

~ A u + F(u)
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u(O) ~ uo and

coincide.

dv
~ ~ (A-aI)v + Fl(v) v(o) ~ uo
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