mapped into a point closure. If B = A we have nothing to prove. Now we suppose that $B \neq A$ and

(m)
$$\int_{S \in S} f(s) \cap (A-B) = \emptyset$$
 (3).

Then we consider the function f' that maps every $s \in S$ into the set f(s) U A_s , where $A_s = \{y \in A - B : y \le s\}$. Charly f' is an injective function and for every $s_1, s_2 \in S$ $s_1 \le s_2$ iff $f(s_1)$ U $A_{s_1} \subseteq f(s_2)$ U A_{s_2} . Moreover if s_1, \ldots, s_n are arbitrary elements of S then $\prod_{i=1}^n (f(s_i) \cup A_{s_i}) = (\prod_{i=1}^n f(s_i)) \cup (\prod_{i=1}^n A_{s_i}) .$

Now let Z be the set of all upper bounds of $\{s_1,\ldots,s_n\}$ in (S,\leq) .

We want to prove that $z \in \mathbb{Z}$ $(f(z) \cup A_z) = \bigcup_{i=1}^{n} (f(s_i) \cup A_{s_i}) = \bigcup_{i=1}^{n} (f(s_i)) \cup (\bigcup_{i=1}^{n} A_i)$

As a consequence of condition $(m)_{z \in Z} (f(z)UA_z) = (\bigcap_{z \in Z} f(z))U(\bigcap_{z \in Z} A_z);$

moreover we already know that $z \in \mathbb{Z}^{f(z)} = \bigcup_{i=1}^{n} f(s_i)$ and $z \in \mathbb{Z}$ $A_z = \bigcup_{i=1}^{n} A_{s_i}$; then it is sufficient to prove that $z \in \mathbb{Z}$ $A_z = \bigcup_{i=1}^{n} A_{s_i}$.

Now if $x \in \bigcap_{z \in Z} A_z$ then x is a v-prime element of $(S, \underline{<})$ such that $x \leq z$ for every $z \in Z$. Moreover Z is the set of all upper bounds of $\{s_1, \ldots, s_n\}$, then as a consequence of the definition of v-prime element $x \leq s_i$ for some $i \in \{1, \ldots, n\}$, thus $x \in \bigcup_{i=1}^n A_s$ and hence $\bigcap_{z \in Z} A_z \subseteq \bigcup_{i=1}^n A_s$. From this the enounced assertion follows.

REFERENCE

[1] D.DRAKE and W.J.THRON "On the representations of an abstract lattice as the family of closed sets of a topological space". Trans. of Amer. Math. Soc. 120(1965), 57-71.

⁽³⁾ The case $(S_{SES}^{U}f(s))\cap (A-B) \neq \emptyset$ can easily be reconducted to condition -