Sommario

In questo lavoro si studia il problema di valori al contorno

(1)
$$EE u = f$$

(2)
$$D^{S}u = 0$$
 su ∂A per $0 \le |s| \le m-1$

dove E è un particolare operatore ellittico di ordine $m \ge 1$ e E è l'operatore formalmente aggiunto di E.

Di tali operatori è possibile costruire gli operatori soluzioni fondamentali. Ciò permette di dimostrare l'esistenza e l'unicità della soluzione del problema (1),(2) in una opportuna classe $\mathcal{U}(A)$ per ogni $f \in \mathcal{L}^2(A)$.

Il fatto più saliente è che dell'operatore di Green del problema (1),(2) si dà la forma esplicita.

Ciò permette di studiare il problema di autovalori relativo ad (1),(2) usando (oltre che il metodo di Rayleigh-Ritz) quello degli invarianti ortogonali.

Consideriamo l'operatore differenziale lineare di ordine 2m a coefficienti reali e costanti

(1)
$$\mathcal{Q}_{2m} = \sum_{s=0}^{2m} a_s \frac{\partial^{2m}}{\partial x^{2m-s} \partial y^s}, \quad a_s \in \mathbb{R}, \ s = 0, 1, \dots, 2m,$$

con la seguente ipotesi di ellitticità:

(2)
$$\sum_{s=0}^{2m} a_s \xi_1^{2m-s} . \xi_2^s \neq 0$$

per ogni vettore (ξ_1, ξ_2) di \mathbb{R}^2 tale che $\xi_1^2 + \xi_2^2 \neq 0$.

Dalla (2) consegue che a. \neq 0 e $a_{2m} \neq$ 0.

Per $\xi_2 \neq 0$, dividendo per ξ_2^{2m} e ponendo $\frac{\xi_1}{\xi_2}$ = w,la condizione (2) diventa:

(3)
$$\sum_{s=0}^{2m} a_s w^{2m-s} \neq 0, \text{ per ogni w reale.}$$

Questo implica che gli zeri del polinomio a I° membro della (3) sono tutti complessi e a due a due coniugati, essendo gli a reali. Se indichiamo tali zeri con $\alpha_h + i\beta_h(\beta_h \neq 0)$, h=1,2,...,m, il I° membro della (2) si può scrivere

(4)
$$a_0 = \prod_{h=1}^{m} \left[\xi_1 - (\alpha_h + i\beta_h) \xi_2 \right] \left[\xi_1 - (\alpha_h - i\beta_h) \xi_2 \right].$$

Per analogia con la (4), l'operatore (1) si può rappresentare nel seguente modo

(5)
$$\mathcal{Q}_{2m}(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = a_0 \frac{m}{h=1} \left[\frac{\partial}{\partial x} - (\alpha_h + i\beta_h) \frac{\partial}{\partial y} \right] \left[\frac{\partial}{\partial x} - (\alpha_h - i\beta_h) \frac{\partial}{\partial y} \right] .$$

Se poniamo

(6)
$$L_{h} = \frac{\partial}{\partial x} - (\alpha_{h} + i\beta_{h}) \frac{\partial}{\partial y} ,$$

indicato con L' l'operatore formalmente aggiunto di L, ,si ha

(7)
$$L_{h}^{*} = -\frac{\partial}{\partial x} + (\alpha_{h} - i\beta_{h}) \frac{\partial}{\partial y} = -\left[\frac{\partial}{\partial x} - (\alpha_{h} - i\beta_{h}) \frac{\partial}{\partial y}\right].$$

Pertanto si può scrivere

$$\mathcal{Z}_{2m}(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = (-1)^{m} a \cdot \prod_{h=1}^{m} L_{h} L_{h}^{*},$$

oppure, per la permutabilità degli L_h e L_h^* ,

$$\mathcal{L}_{2m}(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = (-1)^{m} a_{\bullet} \prod_{h=1}^{m} L_{h} \cdot \prod_{h=1}^{m} L_{h}^{*}.$$

Infine, posto $E = \frac{m}{h=1}L_h$, e osservato che, detto E^* l'aggiunto formale di E,

si ha
$$E^* = \left(\frac{m}{b-1} L_b\right)^* = \frac{m}{b-1} L_b^*$$

si può scrivere

(8)
$$\mathcal{Q}_{2m}(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = (-1)^m a_0 EE^*$$

Sia A un dominio di \mathbb{R}^2 (insieme aperto) limitato e propriamente regolare. Si f una funzione di $\mathscr{L}^2(A)$.

Sia $\mathcal{N}(A)$ la classe delle funzioni u appartenenti a $H_m(A) \prod H_{2m}(A_o)$ per ogni dominio A. tale che $\overline{A}_o \subset A$.

Consideriamo il seguente problema di valori al contorno :

(9)
$$\mathcal{D}_{2m} u = f \quad \text{in } A,$$

(10)
$$D^{S}u = 0$$
 su ∂A , per $0 < |s| < m-1$.

⁽¹⁾Per le notazioni usate si fa riferimento a [1]

Tenendo presente il significato dell'operatore \mathcal{D}_{2m} e pensando conglobata la costante $(-1)^m a_0^{-4}$ nel dato f,il problema (9),(10) si può scrivere

(11)
$$EE = f \qquad \text{in A},$$

(12)
$$D^{S}u = 0 \qquad \text{su } \partial A, \text{ per } 0 \leqslant |s| \leqslant m-1.$$

Così formulato il problema è di tipo biarmonico generalizzato. (2)

Dimostreremo che esistono gli operatori T e T * soluzione fondamentale rispettivamente di E e E. Ciò assicura (21) l'esistenza elunicità della soluzione u del problema (11),(12) nella classe $\mathcal{U}(A)$, per ogni f di $\mathcal{L}^2(A)$.

Daremo, inoltre, una costruzione esplicita dell'operatore G di Green del nostro problema per mezzo di T, T * e di un operatore proiezione.

Procederemo nel seguente modo :

I)-mediante un opportuno cambiamento di variabili, trasformeremo gli operatori L_h e L_h^* dati da (6),(7), rispettivamente, negli operatori

(13)
$$L = \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}$$

(14)
$$L^{*} = -\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}$$
,

dei quali, come è noto, sono operatori soluzioni fondamentali rispettivamente

$$Tf = \frac{1}{2\pi} \iint_{A} \frac{f(\zeta)}{z - \zeta} d\xi dn \ e \ T^*f = \frac{1}{2\pi} \iint_{A} \frac{f(\zeta)}{\zeta - z} d\xi dn \ ,$$

dove $\zeta = \xi + i\eta$ e z = x + iy.

Ciò permette non solo di affermare che gli operatori L_h e L_h^* hanno soluzioni fondamentali, ma anche di darne una forma esplicita;

⁽²⁾ Vedi [2] (2') cfr.[2]pp. 38-40.

II)- successivamente proveremo che, detti T_h e T_h^* gli operatori soluzione fondamentale di L_h e L_h^* , e posto $T = T_m T_{m-1} \dots T_2 T_1$ e $T = T_1^* T_2^* \dots T_m^*$, gli operatori T e T^* sono rispettivamente soluzione fondamentale di L e L^* .

Ciò premesso, considerato l'operatore $L_h = \frac{\partial}{\partial x} - (\alpha_h + i\beta_h) \frac{\partial}{\partial y}$ $(\beta_h \neq 0)$, determiniamo le costanti reali $\gamma_{ij}^{(h)}$ (i,j=1,2; h=1,2,...,m) in modo tale che, mediante la trasformazione

(15)
$$\begin{cases} X = \gamma_{11}^{(h)} x + \gamma_{12}^{(h)} y \\ Y = \gamma_{21}^{(h)} x + \gamma_{22}^{(h)} y \end{cases}$$

l'operatore L_h diventi $\frac{\partial}{\partial X} - i \frac{\partial}{\partial Y}$.

Si ha:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial X} \gamma_{11}^{(h)} + \frac{\partial u}{\partial Y} \gamma_{21}^{(h)} \\ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial X} \gamma_{12}^{(h)} + \frac{\partial u}{\partial Y} \gamma_{22}^{(h)} \end{cases}$$

Pertanto l'operatore L_h, nelle variabili X e Y, diventa

$$\frac{\partial}{\partial x} \gamma_{11}^{(h)} + \frac{\partial}{\partial y} \gamma_{21}^{(h)} - (\alpha_h + i\beta_h) (\frac{\partial}{\partial x} \gamma_{12}^{(h)} + \frac{\partial}{\partial y} \gamma_{22}^{(h)}).$$

Perchè esso sia uguale a $\frac{\partial}{\partial X} - i \frac{\partial}{\partial Y}$ dev'essere

$$\begin{cases} \gamma(h) - \alpha_h \gamma(h) - i\beta_h \gamma(h) = 1 \\ \gamma(h) - \alpha_h \gamma(h) - i\beta_h \gamma(h) = -i \\ \gamma(21) - \alpha_h \gamma(22) - i\beta_h \gamma(22) = -i \end{cases},$$

da cui risulta:
$$\gamma_{11}^{(h)} = 1$$
; $\gamma_{12}^{(h)} = 0$; $\gamma_{21}^{(h)} = \frac{\alpha_h}{\beta_h}$; $\gamma_{22}^{(h)} = \frac{1}{\beta_h}$.

Pertanto la trasformazione richiesta è :

(16)
$$\begin{cases} X = x \\ Y = \frac{\alpha_h}{\beta_h} x + \frac{1}{\beta_h} y \end{cases}$$
, da cui (17)
$$\begin{cases} x = X \\ y = -\alpha_h X + \beta_h Y \end{cases}$$
.

Per quanto notato precedentemente, per l'operatore $\frac{\partial}{\partial X}$ - $i\frac{\partial}{\partial Y}$ esiste una soluzione fondamentale data da

(18)
$$\frac{1}{2\pi} \iint_{\Omega} \frac{F(W)}{\overline{Z} - \overline{W}} dUdV,$$

dove :

Z = X + iY ; W = U + iV ;

 Ω è il trasformato del dominio A mediante le (17);

F(z) = F(X,Y) è la funzione composta mediante la f e le (17).

Tornando, tramite, le (16), alle variabili $z=x+iy\in \zeta=\xi+i\eta$, si ottiene, per la soluzione fondamentale T_hf di $L_hu=f$, la seguente rappresentazione:

(19)
$$T_{h}f = \frac{1}{2\pi} \iint_{A} \frac{f(\zeta)}{x - i\frac{\alpha_{h}}{\beta_{h}}x - i\frac{y}{\beta_{h}} - \xi + i\frac{\alpha_{h}}{\beta_{h}}\xi + i\frac{\eta}{\beta_{h}}} \left| \frac{\partial(U,V)}{\partial(\xi,\eta)} \right| d\xi d\eta =$$

$$=\frac{1}{2\pi\beta_{h}}\iint\limits_{A}\frac{f(\zeta)}{\left(1-i\frac{\alpha_{h}}{\beta_{h}}\right)x-\frac{i}{\beta_{h}}y-\left(1-i\frac{\alpha_{h}}{\beta_{h}}\right)\xi+\frac{i}{\beta_{h}-\eta}}d\xi d\eta\,.$$

Procedendo in modo analogo si ha:

(20)
$$T_{h}^{\star}f = \frac{1}{2\pi\beta_{h}} \iint_{A} \frac{f(\zeta)}{\left(1+i\frac{\alpha_{h}}{\beta_{h}}\right)\xi + \frac{i}{\beta_{h}}\eta - \left(1+i\frac{\alpha_{h}}{\beta_{h}}\right)x - i\frac{y}{\beta_{h}}} d\xi d\eta$$

La (19)e la (20) forniscono la forma esplicita degli operatori

soluzione fondamentale di L_h e L_h^* .

Per dimostrare la II parte osserviamo che, essendo $\mathbf{T}_{\mathbf{h}}$ operatore soluzione fondamentale di $\mathbf{L}_{\mathbf{h}}$, si ha

$$L_h T_h = I$$
 per $h = 1, 2, \dots, m$

dove I é l'operatore identico.

Pertanto, applicando m volte la proprietà associativa, risulta

$$\begin{pmatrix} L_1 L_2 \dots L_{m-1} L_m \end{pmatrix} \begin{pmatrix} T_m T_{m-1} \dots T_2 T_1 \end{pmatrix} f = \begin{pmatrix} L_1 \dots L_{m-1} \end{pmatrix} \begin{pmatrix} L_m T_m \end{pmatrix} \begin{pmatrix} T_{m-1} \dots T_1 \end{pmatrix} f =$$

$$= \dots = L_1 \begin{pmatrix} L_2 T_2 \end{pmatrix} T_1 f = L_1 T_1 f = f.$$

Resta così provato che T = $T_m T_{m-1} \dots T_2 T_1$ è operatore soluzione fondamentale di $E = L_1 L_2 \dots L_{m-1} L_m$.

Analogamente $T^* = T_m^* T_{m-1}^* \dots T_2^* T_1^*$ è operatore soluzione fondamentale di $E^* = L_1^* L_2^* \dots L_{m-1}^* L_m^*$.

Per determinare la forma esplicita di T e T*, poniamo

(21)
$$K_{h}(z,\zeta) = \frac{1}{2\pi \left((\beta_{h} - i\alpha_{h}) \times - iy - (\beta_{h} - i\alpha_{h}) \xi + in \right)},$$

(22)
$$K_{h}^{*}(z,\zeta) = \frac{1}{2\pi \left((\beta_{h} + i\alpha_{h})\xi + i\eta - (\beta_{h} + i\alpha_{h})x - iy \right)},$$

per h = 1, 2, ...m.

Allora le (19) e (20) prendono la seguente forma :

(23)
$$T_{h}f = \iint_{A} K_{h}(z,\zeta)f(\zeta)d\zeta d\eta ,$$

(24)
$$T_{h}^{\star}f = \iint_{A} \ddot{\kappa}_{h}^{\star}(z,\zeta)f(\zeta)d\xi d\eta .$$

Si ha pertanto

$$\begin{split} T_2 T_1 f &= T_2 \iint_A K_1(z,\zeta) f(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta = \iint_A K_2(z,\zeta_1) \, \mathrm{d}\xi_1 \, \mathrm{d}\eta_1 \iint_A K_1(\zeta_1,\zeta) f(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta = \\ &= \iint_A f(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta \iint_A K_2(z,\zeta_1) K_1(\zeta_1,\zeta) \, \mathrm{d}\xi_1 \, \mathrm{d}\eta_1 = \iint_A K_2(z,\zeta) f(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta, \end{split}$$

dove si è posto

$$\label{eq:K2} {\rm K}^{(2)}(z,\zeta) \, = \, \iint_{\rm A} \!\!\! {\rm K}_2(z,\zeta_1) {\rm K}_1(\zeta_1,\zeta) {\rm d}\xi_1 {\rm d}\eta_1 \quad ; \zeta_1 \, = \, \xi_1 \, + \, {\rm i}\eta_1 \; .$$

Analogamente si ha:

$$T_{3}T_{2}T_{1}f = T_{3} \iint_{A} K^{(2)}(z,\zeta)f(\zeta)d\xi d\eta = \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} \iint_{A} K^{(2)}(\zeta_{1},\zeta)f(\zeta)d\xi d\eta = \iint_{A} K_{3}(z,\zeta_{1})K^{(2)}(\zeta_{1},\zeta)d\xi_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})K^{(2)}(\zeta_{1},\zeta)d\xi_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} \iint_{A} K_{3}(z,\zeta_{1})d\xi_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})d\zeta_{1}d\zeta_{1}d\eta_{1} = \iint_{A} K_{3}(z,\zeta_{1})d\zeta_{1}$$

 $= \iint_{A} f(\zeta) d\xi d\eta \iint_{A} d\xi_{1} d\eta_{1} \iint_{A} K_{3}(z,\zeta_{1}) K_{2}(\zeta_{1},\zeta_{2}) K_{1}(\zeta_{2},\zeta) d\xi_{2} d\eta_{2} = \iint_{A} K^{(3)}(z,\zeta) f(\zeta) d\xi d\eta,$

dove si è posto

$$K^{(3)}(z,\zeta) = \iint_A d\xi_1 d\eta_1 \iint_A (z,\zeta_1) K_2(\zeta_1,\zeta_2) K_1(\zeta_2,\zeta) d\xi_2 d\eta_2 \quad \text{con } \zeta_2 = \xi_2 + \text{in}_2 \ .$$

In generale, per $T = T_m T_{m-1} \dots T_2 T_1$, si avrà

(25)
$$Tf = \iint_{A} (z,\zeta)f(\zeta)d\xi d\eta ,$$

dove si è posto

(26)
$$K^{(m)}(z,\zeta) = \iint_{A}^{d\xi_1 d\eta_1} \iint_{A}^{d\xi_2 d\eta_2} \dots \iint_{A}^{d\xi_{m-2} d\eta_{m-2}} \iint_{A^m}^{K} (z,\zeta_1) \dots K_1(\zeta_{m-1},\zeta_n) d\xi_{m-1} d\eta_{m-1}$$

con $\zeta_h = \xi_h + i\eta_h$, $h = 1,2,\dots,m-1$.

Analogamente si ha

(27)
$$T^{*}f = \iint_{A} (z,\zeta)f(\zeta)d\xi d\eta, \text{dove si è posto}$$

Tornando al nostro problema (11),(12), in virtù dei risultati di [2] esiste una ed una soluzione u appartenente allo spazio $\mathcal{U}(A)$. Essa è data da

$$(29) u = Gf,$$

dove

$$G = TT^* - TPT^*$$

essendo P il proiettore ortogonale di $\mathcal{L}^2(A)$ sul sottospazio $\Omega(A)$ di $\mathcal{L}^2(A)$ costituito dalle funzioni di $C^\omega(A)$ soluzioni della equazione omogenea

$$(31) E^* u = 0 in A.$$

TEOREMI DI COMPLETEZZA PER LO SPAZIO $\Omega(A)$.

Facciamo vedere che, fissato un opportuno dominio $B \supset \overline{A}$, comunque si scelga $w \in H_m(A)$ soluzione di $E^*w = 0$ in A e comunque si scelga $\varepsilon > 0$, esiste $u \in H_m(B)$, soluzione di $E^*u = 0$ in B, tale che $||w-u||_A < \varepsilon$. (3)

⁽³⁾ Ora e nel seguito la norma ed il prodotto scalare indicati sono quelli usuali dello spazio $\mathcal{L}^2(A)$.

A-tale scopo premettiamo alcuni lemmi.

LEMMA I

Sia
$$u \in H_2(A)$$
 e $L^* = -(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$.

Sussiste la seguente implicazione :

$$\left[u \Big|_{\partial A} = 0 \ e \ L^* u \Big|_{\partial A} = 0 \right] \Longrightarrow \left[Du \Big|_{\partial A} = 0 \right]$$
.

Dimostrazione.

Posto
$$u=u_1+iu_2(u_1 e u_2 reali)$$
, si ha $L=u=-\frac{\partial u_1}{\partial x}-i\frac{\partial u_2}{\partial x}-i\frac{\partial u_1}{\partial y}+\frac{\partial u_2}{\partial y}=$

$$=-\frac{\partial u_1}{\partial x}+\frac{\partial u_2}{\partial y}-i(\frac{\partial u_2}{\partial x}+\frac{\partial u_1}{\partial y}).$$

Pertanto dev'essere :

(i)
$$\begin{cases} -\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} = 0\\ \frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} = 0 \end{cases}$$
 su ∂A .

D'altra parte, da $u_1 + iu_2 = 0$ su ∂A , consegue

(ii)
$$\begin{cases} \frac{\partial u_1}{\partial x} \frac{dx}{ds} + \frac{\partial u_1}{\partial y} \frac{dy}{ds} = 0 \\ \frac{\partial u_2}{\partial x} \frac{dx}{ds} + \frac{\partial u_2}{\partial y} \frac{dy}{ds} = 0 \end{cases}$$
 su ∂A .

Le (i),(ii) costituiscono un sistema omogeneo di quattro equazioni nelle incognite $\frac{\partial u_1}{\partial x}$, $\frac{\partial u_1}{\partial y}$, $\frac{\partial u_2}{\partial x}$, $\frac{\partial u_2}{\partial y}$, il cui determinante è $(\frac{dx}{ds})^2 + (\frac{dy}{ds})^2 \neq 0$.

Pertanto l'unica soluzione di (i),(ii) è
$$\frac{\partial u_1}{\partial x} = \frac{\partial u_1}{\partial y} = \frac{\partial u_2}{\partial x} = \frac{\partial u_2}{\partial y} = 0$$
.

Osserviamo che, in virtù delle (17) che trasformano un qualsiasi operatore L_h^* (h=1,2,...,m) del nostro problema in L^* , il lemma continua a sussistere se si sostituisce a L^* uno qualunque degli operatori L_h^* .

LEMMA II

Siano dati :

1) L,L* gli operatori (13),(14) e sia K(z, ζ)= $\frac{1}{2\pi}\cdot\frac{1}{\overline{\zeta}-\overline{z}}$,K*(z, ζ)= $\frac{1}{2\pi}\cdot\frac{1}{\zeta-z}$ 2) un dominio B di \mathbb{R}^2 tale che : i) B $\supset \overline{A}$; ii) $\forall z$ $\in (\overline{A},]z \in (\overline{B}, tale)$

che z e z. siano estremi di una poligonale tutta contenuta in (A;

3) we
$$\mathcal{L}^2(A)$$
.

Sussiste la seguente implicazione :

$$\left((w,u)_{A}=0,\forall u\in C^{\omega}(B)\mid L^{*}u=0 \text{ in } B\right)\Longrightarrow \left(\begin{matrix} \psi\in H_{1}(A), \text{ tale che}:\\ L\psi=w \text{ in } A\in\psi|_{\partial A}=0 \end{matrix}\right)$$

Dimostrazione.

Per ogni $z \in (\overline{B} \text{ poniamo } u(\zeta) = K^{*}(z,\zeta).$

Risulta : $L_{\zeta}^{*}u = 0$ in B . Infatti

$$u(\zeta) = K'(z,\zeta) = \frac{1}{2\pi} L_{\zeta} \log |z-\zeta|$$

da cui

$$L_{\zeta}^{\star}u = -\frac{1}{2\pi}L_{\zeta}^{\star}L_{\zeta}\log|z-\zeta| = -\frac{1}{2\pi}\Delta_{2}\log|z-\zeta| = 0.$$

Per ipotesi si ha

$$\iint_{A} w(\zeta) (K^{*}(z,\zeta) d\xi d\eta = 0 \text{ ossia} \iint_{A} K(z,\zeta) w(\zeta) d\xi d\eta = 0.$$

Tale uguaglianza è vera per la 2) ii), per ogni ze (Ā

Posto
$$\psi(z) = \iint_A K(z,\zeta)w(\zeta)d\xi d\eta e \phi(z) = \iint_A \log|z-\zeta|w(\zeta)d\xi d\eta$$

e osservato che $K(z,\zeta) = -\frac{1}{2\pi} L_z \log |z-\zeta|$, risulta $\psi(z) = -\frac{1}{2\pi} L_z^{\dagger} \psi(z)$.

E poiché $\phi(z)$ appartiene ad $H_2(B)$, (cfr. [3]), la funzione $\psi(z)$ appartiene ad $H_1(B)$. Inoltre $L_z\psi=-\frac{1}{2\pi}L_zL_z^*\phi=\frac{1}{2\pi}\Delta_z\phi=\psi$ (formula di Poisson). Infine ψ , come funzione di $H_1(B)$, attraversa con continuità ∂A (secondo le funzioni di H_1). Quindi ψ ∂A = 0.

Il lemma è così dimostrato.

In virtù delle (16) e (17), tale lemma continua a sussistere se si sostituisce L^* con l'operatore L o con uno degli operatori L_h^* o L_h^* .

Dimostriamo ora il seguente

TEOREMA I

Siano L_1^* e L_2^* due degli operatori del nostro problema.

Sia $w \in C^{\omega}(A) \cap \mathcal{L}^{2}(A)$ tale che $L_{1}^{*}L_{2}^{*}w = 0$ in A.

Sia B un dominio soddisfacente la 2) del lemma precedente.

Sussiste la seguente implicazione :

$$(w,u)_A = 0 \quad \forall u \in C^{\omega}(B) \text{ tale che } L_1 L_2 u = 0 \text{ in } B) \Longrightarrow (w = 0 \text{ in } A)$$

Dimostrazione.

Sia he $C^{\omega}(B)$ e tale che $L_2^{\omega}h=0$ in B. Per l'ipotesi ammessa sarà $(w,h)_A=0$. Per il lemma II esisterà $\sigma\in H_1(A)$ tale che $L_2^{\sigma}=w$ in A, $\sigma_{\partial A}=0$. Sarà, allora, sempre per l'ipotesi ammessa,

$$(L_2 \sigma, u)_A = 0$$

dove u soddisfa le condizioni dell'enunciato. Dalla (*) segue $(\sigma, L_2^*u)_A^* = 0$ e, ponendo

$$v = L_2^* u ,$$

si trae

$$(\sigma, v)_{\Lambda} = 0.$$

La (***) sussiste per ogni $v \in C^{\omega}(B)$, tale che $L_1^*v = 0$ in B.

Infatti, data una tale v, esiste sempre una u verificante le condizioni dell'enunciato, tale che sussista la (**). Esisterà, allora, $\rho \in H_1(A)$ tale che $L_1^{\rho} = \sigma$ in A, $\rho \mid \partial A = 0$.

Pertanto si avrã $w = L_2 \sigma = L_2 L_1 \rho$. Inoltre, essendo $\sigma \in H_1(A)$, si avrã $\rho \in H_2(A)$. Riesce quindi, $\rho_{|A} = 0$, $L_1 \rho_{|A} = 0$, $L_2 L_1 \rho_{|A} = 0$ in A, cioé

 $\Delta_2 \rho = 0$ in A, $\rho \in H_2(A) \cap H_4(A_o)$ per ogni A_o tale che $\overline{A}_o \subset A$. Ne viene (efr.[2],p. 39) $\rho \equiv 0$ in A e, quindi, $w \equiv 0$

LEMMA III

Sia $u \in H_{n+1}(A)$ con n > 1.

Sussiste la seguente implicazione :

$$\left(\left. u \right|_{\partial A} = 0 \text{ e } \left. D^{S} L^{*} u \right|_{\partial A} = 0, 0 \leqslant \left| s \right| \leqslant n - 1 \right) \Rightarrow \left(\left. D^{S} u \right|_{\partial A} = 0, o \leqslant \left| s \right| \leqslant n \right)$$

Dimostrazione per induzione.

Il lemma è vero per n = l (lemma I) .

Facciamo vedere che, se è vera l'implicazione (ipotesi induttiva)

$$\left[u\big|_{\partial A} = 0 \ e^{D^{S}L^{T}}u\big|_{\partial A} = 0, \ 0 < |s| < n-2\right) \Rightarrow \left(D^{S}u\big|_{\partial A} = 0, \ 0 < |s| < n-1\right],$$

allora è anche vero che :

$$\left[u \Big|_{\partial A} = 0 \ e \ D^{S}L^{X}u \Big|_{\partial A} = 0, \ 0 \le |s| \le n-1 \right] \Rightarrow \left[D^{S}u \Big|_{\partial A} = 0, \ 0 \le |s| \le n \right]$$

E' evidente che :

$$\left(\begin{array}{c|c} u \mid_{\partial A} = 0 \text{ e } D^{S}L^{+}u \mid_{\partial A} = 0, \\ \text{per } 0 \leqslant |s| \leqslant n-1 \end{array} \right) \Longleftrightarrow \left(\begin{array}{c|c} j) \quad u \mid_{\partial A} = 0 \text{ e } D^{S}L^{+}u \mid_{\partial A} = 0, \quad 0 \leqslant |s| \leqslant n-2 \\ \\ jj) \quad \frac{\partial^{n-1}L^{+}u}{\partial x^{h}\partial y^{n-1-h}} \mid_{\partial A} = 0, \quad 0 \leqslant h \leqslant n-1 \end{array} \right)$$

Dalla j), per l'ipotesi induttiva, consegue che $D^{S}u|_{\partial A}=0$, 0 < |s| < n-1. D'altra parte la jj), scambiando l'ordine di derivazione, diviene :

$$\frac{\partial^{n-1}L^*u}{\partial x^h \partial y^{n-1-h}} = L^*\frac{\partial^{n-1}u}{\partial x^h \partial y^{n-1-h}} = 0$$

su ∂A , $0 \le h \le n - 1$.

In virtù dell'ipotesi induttiva, si ha

$$\frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = 0 \quad \text{su} \quad \partial A \quad \text{per} \quad 0 \leqslant h \leqslant n-1.$$

Posto $u^{(n-1,h)} = \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}}$, risulta $u^{(n-1,h)} \in H_2(A)$, e quindi,

per il lemma I, si ha Du^(n-1,h)= 0 su ∂A, ossia :

(o)
$$\frac{\partial}{\partial x} \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = \frac{\partial^n u}{\partial x^{h+1} \partial y^{n-1-h}} = 0$$

su ∂A , per $0 \le h \le n-1$

$$(00) \frac{\partial}{\partial y} \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = \frac{\partial^n u}{\partial x^h \partial y^{n-h}} = 0$$

Le (o),(oo) si possono scrivere : $\frac{\partial^n u}{\partial x^h \partial y^{n-h}}\Big|_{\partial A} = 0$, per $0 \le h \le n$.

Il lemma è così dimostrato.

L'implicazione è ancora valida se si sostituisce L^* con L_h^* ; in virtù delle (16).

LEMMA IV

Sianos

- 1) A un dominio limitato di IR propriamente regolare;
- 2) B un dominio soddisfacente la 2) del lemma II;
- 3) $w \in \mathcal{L}^2(A)$.

Sussiste la seguente implicazione :

$$\left((w,u)_{A} = 0, \forall u \in C^{\omega}(B) \text{ tale che } E^{\star}u = 0 \text{ in } B \right) \Rightarrow \begin{bmatrix} \exists \sigma \in H_{m}(A) \text{ tale che :} \\ E.\sigma = w \text{ in } A \in D^{S}\sigma|_{\partial A} = 0 \\ \text{per } 0 < |s| < m-1 \end{bmatrix}$$

Dimostrazione.

Per ogni
$$z \in (\overline{B}, poniamo u(\zeta) = K^{(m)*}(z,\zeta) =$$

$$= \iint_{B} d\xi_{1} d\eta_{1} \iint_{B} d\xi_{2} d\eta_{2} \dots \iint_{B} d\xi_{m-2} d\eta_{m-2} \iint_{B} K_{m}^{*}(z,\zeta_{1}) \dots K_{1}^{*}(\zeta_{m-1},\zeta) d\xi_{m-1} d\eta_{m-1}.$$
Risulta $u(\zeta) \in C^{\omega}(B)$. Pertanto, per lipotesi si ha:

$$\iint_{A} w(\zeta) \left(\begin{array}{c} \overline{K^{(m)}(z,\zeta)} \end{array} \right) d\xi d\eta = 0 , \text{ ossia} \iint_{A} K^{(m)}(z,\zeta) w(\zeta) d\xi d\eta = 0 .$$

Quest'ultima uguaglianza sussiste anche per ogni z \in $\int \overline{A}$

Pertanto, posto
$$\sigma(z) = \iint_A K^{(m)}(z,\zeta)w(\zeta)d\xi d\eta$$
, risulta: $\sigma \in H_m(B)$; $E\sigma = w$ in A ; $D^S\sigma|_{\partial A} = 0$ per $0 < |s| < m-1$ (poichè σ e le

sue derivate, fino a quelle di ordine m-l, attraversano con continuità AA nel senso delle funzioni di H_).

TEOREMA II

Sia $m \ge 2$. A e B soddisfino le ipotesi del lemma IV e sia $w \in C^{\omega}(A) \cap \mathcal{L}^{2}(A)$ tale che:

1)
$$E^*w = 0$$
 in A.

Sussiste la seguente implicazione:

$$\left((\mathbf{w}, \mathbf{u})_{\mathbf{A}} = 0, \ \forall \ \mathbf{u} \in C^{\omega}(\mathbf{B}) \ \text{tale che } \mathbf{E}^* \mathbf{u} = 0 \text{ in } \mathbf{B} \right) \longrightarrow \left(\begin{array}{c} \mathbf{w} = \mathbf{0} \\ \mathbf{w} = \mathbf{0} \end{array} \right)$$

Dimostrazione.

Sia $h \in C^{\omega}(B)$ tale che $L_2^* L_3^* ... L_m^* h = 0$ in B. Per l'ipotesi assunta riesce $(w,h)_A = 0$. In virtù del Lemma IV esiste $\sigma \in H_{m-1}(A)$ tale che $L_2 ... L_m \sigma = w$ in $A,D^S \sigma_{|\partial A} = 0$ per $0 \le |s| \le m-2$. Sempre per l'ipotesi ammessa riesce, pertanto,

(o)
$$(L_2...L_m \sigma, u)_A = 0$$
,

dove u soddisfa le condizioni dell'enunciato.

Dalla (o) segue $(\sigma, L_2^* \dots L_m^* u)_A = 0$ e, ponendo

(oo)
$$v = L_2^* ... L_m^* u$$
,

si deduce

$$(000) (\sigma, v)_{\Lambda} = 0.$$

La (ooo) sussiste per ogni $v \in C^{\omega}(B)$ tale che $L_1^*v=0$ in B. Infatti assegnata una tale v, esiste sempre una u verificante le condizioni dell'enunciato, tale che sussista la (oo). Per il lemma II esiste, pertanto, $\rho \in H_1(A)$, tale che $L_1\rho=\sigma$ in A, $\rho_{|\partial A}=0$. Si ha, pertanto, $w=L_2\ldots L_m\sigma=L_1\ldots L_n\rho$.

Inoltre, essendo $\sigma \in H_{m-1}(A)$, si ha $\rho \in H_m(A)$ come facilmente si dimostra usando il teorema di Lichtenstein-Friedrichs ed il fatto che $D^S \sigma_{|\partial A} = 0$ per $0 < |s| \le m-2$. Riesce, quindi, $\rho_{|\partial A} = 0$, $D^S L_1 \rho_{|\partial A} = 0$ per $0 \le |s| \le m-2$; in virtù del Lemma III, si ha, allora, $D^S \rho_{|\partial A} = 0$ per $0 \le |s| \le m-1$. Inoltre $L_m^* \dots L_1^* L_m \dots L_1 \rho = 0$ in $A, \rho \in H_m(A) \cap H_{2m}(A_0)$ per ogni A tale che $A \subset A$. Se ne deduce, pertanto, (cfr.[2], pag. 39) $\rho \equiv 0$ in A e, quindi, $w \equiv 0$.

Dal teorema II consegue la determinazione di un sistema completo nel sottospazio $\Omega(A)$; le funzioni di tale sistema si ottengono considerando in B le soluzioni della equazione omogenea associata alll'operatore E; B soddisfa la 2) del Lemma II.

Supponiamo ora che A e B siano semplicemente connessi.

In virtù di teoremi di rappresentazione dovuti a T. Boggio le soluzioni in B di

*
E u = 0 si possono rappresentare mediante le soluzioni, in B, di L*u = 0 (i=1,2...)

Riportiamo qui di seguito, con riferimento agli operatori differenziali del nostro problema, due teoremi di rappresentazione di T. Boggio: [4]

- 1°) Se $\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2$, con \mathcal{D}_1 e \mathcal{D}_2 primi fra loro, allora ogni funzione U di $C^\omega(B)$ che soddisfa l'equazione \mathcal{D} U = 0 può rappresentarsi con la formula U = U' + U", dove U' e U" sono funzioni che soddisfano le equazioni $\mathcal{D}_1 U' = 0$ e $\mathcal{D}_2 U'' = 0$.
- 2°) Ogni funzione U di C^ω(B) soddisfacente Ø V = 0 può sempre rappresen
 tarsi mediante p+1 funzioni U₁,U₂,...U_{p+1} che verificano l'equazione
 ØU = 0, per mezzo della formula U = x^PU₁ + x^{P-1}U₂+...+xU_p + U_{p+1}.
 Applicando il Teorema l°) al caso dei nostri operatori, se E* = L*₁...L*_m con

 $L_h^* \neq L_j^*$ per $h \neq j$, risulta

$$\omega = \sum_{h=1}^{m} u^{(h)},$$

dove ω è una generica soluzione in B di $E^*\omega=0$ e le u^(h) sono soluzioni in B delle equazioni omogenee associate agli operatori L_h^* , per $h=1,2,\ldots m$. Più in generale, per i teoremi 1°) e 2°), se $E^*=L_1^{*^{S_1}}\ldots L_p^{*^{S_p}}$, con $s_i\in \mathbb{N}$ e $s_1+s_2+\ldots+s_p=m$, per ω tale che $E^*\omega=0$ in B, si ha

(38)
$$\omega = \sum_{h=1}^{p} (x u_{h,1} + x u_{h,2} + \dots + x u_{h,s_{h}-1} + u_{h,s_{h}})$$

con le u (1<j<s,) soluzioni della equazione omogenea associata all'operatore L h in B.

Sia ω una soluzione in B dell'equazione E ω = 0. Per essa sussiste la (38). D'altra parte, in ogni compatto contenuto in B(e,in particolare, in \overline{A}), per classici risultati si ha:

(38')
$$u_{h,j} = \lim_{n \to \infty} P_{h,j}^{(n)},$$

essendo $P_{h,j}^{(n)}$ un polinomio nella variabile complessa $x+i(\frac{\alpha_h}{\beta_h}x+\frac{1}{\beta_h}y)$.

Ne viene che la successione di funzioni

$$\{\left[x+i\left(\frac{\alpha_{h}}{\beta_{h}}x+\frac{1}{\beta_{h}}y\right)\right]^{n}\}\$$
 (h = 1,...,p; n = 0,1,2,...)

costituisce, per la (38') e per il Teorema II, un sistema completo in $\Omega(A)$.Ordinando in una successione ad un solo indice quella testé indicata, si ottiene la successione $\{\omega_k\}$ (k =1,2,...).

Ciò premesso, ritornando al problema di determinare la forma esplicita dell'opera tore G dato dalla (30), si ha

$$TT^*f = \iint_{\underline{A}} K^{(m)}(z,\zeta_1) d\xi_1 d\eta_1 \iint_{\underline{A}} K^{(m)^*}(\zeta_1,\zeta) f(\zeta) d\xi d\eta =$$

$$= \iint_{\underline{A}} f(\zeta) d\xi d\eta \iint_{\underline{A}} K^{(m)}(z,\zeta_1) K^{(m)^*}(\zeta_1,\zeta) d\xi_1 d\eta_1.$$

Pertanto

(39)
$$TT^* = \iint_{\mathbf{A}} K^{(m)}(z,\zeta_1) K^{(m)*}(\zeta_1,\zeta) d\xi_1 d\eta_1,$$

$$con K^{(m)} \in K^{(m)*} \text{ dati rispettivamente dalla (26) e (28) }.$$

Tenendo presente il significato del proiettore P che figura nella (30), risulta

$$PT^{*}f = \sum_{k=1}^{\infty} a_{k}\omega_{k} , \text{ con } a_{k} = (T^{*}f, \omega_{k})_{A} =$$

$$= \iiint_{A} \left(\iint_{A} K^{(m)} (\zeta_{1}, \zeta) f(\zeta) d\xi d\eta \right) \overline{\omega}_{k} (\zeta_{1}) d\xi_{1} d\eta_{1} =$$

$$= \iiint_{A} K^{(m)} (\zeta_{1}, \zeta) \overline{\omega}_{k} (\zeta_{1}) d\xi_{1} d\eta_{1} f(\zeta) d\xi d\eta .$$

Pertanto

$$PT^{*} = \sum_{k=1}^{\infty} \left\{ \int_{A} K^{(m)*}(\zeta_{1},\zeta) \overline{\omega}_{k}(\zeta_{1}) d\xi_{1} d\eta_{1} \right\} \omega_{k}(z) , da cui$$

$$(40) TPT^{*} = \sum_{k=1}^{\infty} \int_{A} K^{(m)}(z,\zeta_{1}) \left\{ \int_{A} K^{(m)}(\zeta_{2},\zeta) \omega_{k}(\zeta_{2}) d\xi_{2} d\eta_{2} \right\} \omega_{k}(\zeta_{1}) d\xi_{1} d\eta_{1} = \sum_{k=1}^{\infty} \int_{A} K^{(m)}(z,\zeta_{1}) \omega_{k}(\zeta_{1}) d\xi_{1} d\eta_{1} \int_{A} K^{(m)*}(\zeta_{1},\zeta) \overline{\omega}_{k}(\zeta_{1}) d\xi_{1} d\eta_{1} .$$

Infine, per le (39), (40), l'operatore di Green ha la seguente forma :

(41)
$$G = TT^* - TPT^* = \iint_A K^{(m)}(z,\zeta_1)K^{(m)*}(\zeta_1,\zeta)d\xi_1d\eta_1 - \sum_{k=1}^{\infty} \iint_A K^{(m)}(z,\zeta_1)\omega_k(\zeta_1)d\xi_1d\eta_1 \iint_A K^{(m)*}(\zeta_1,\zeta)\overline{\omega}_k(\zeta_1)d\xi_1d\eta_1 .$$

Tale rappresentazione dell'operatore G può essere impiegata per il calcolo degli autovalori del seguente problema:

(1')
$$EE^* v - \lambda v = 0$$
 $v \in \mathcal{N}(A)$
(2') $D^S v = 0$ su ∂A , per $0 \le |s| \le m-1$

secondo la teoria esposta in [5] (cfr. pp. 69-71).

BIBLIOGRAFIA

- 1 G. FICHERA, Linear elliptic differential systems and eigenvalue

 problems Lecture Notes in Mathem. n°8, Springer Verlag
 Berlin, Heidelberg, New York 1965.
- 2 G. FICHERA, Generalized biharmonic problem and related eigenvalue problem, Blanch Anniversary Volume, Aerospace Research Laboratories, Office of Aerospace Research, USAF, Feb. 1967.
- 3 K.O.FRIEDRICHS, A Theorem of Lichtenstein, Duke Math. Journ., vol. 14, 1947.
- T.BOGGIO, Sull'integrazione di alcune equazioni lineari alle derivate parziali, Annali di Matematica, Serie III, Tomo VIII, 1903.
- 5 G. FICHERA, <u>Numerical and Quantitative Analysis</u>, Pitman, London, San Francisco, Melbourne, 1978.