then, since $a \cdot b = b \cdot a$, if heN it follows that $2^{h} b = b [(k+1)^{h}] \cdot a^{l}$, where LeN depends on h but does not depends on b. Now we recall that the coset k+1+(n) is invertible in $\frac{z}{(n)}(\cdot)$, and hence $\overline{h}eN$ exists such that $(k+1)^{\overline{h}} \equiv 1 \pmod{n}$. As a consequence $2^{\overline{h}}b = b \cdot a^{\overline{l}}$, therefore $(2^{\overline{h}})^{n}b = (2^{\overline{h}} + \dots + 2^{\overline{h}})b = b \cdot a^{\overline{l}} + \dots + a^{\overline{l}} = b$; then since a is the unique element in S such that a+a = a, in the semigroup M(+) b generates a group whose zero-element is a. From this it follows that M(+) is a group since b is an arbitrary element of M.

Q.E.D.

N.2. A CHARACTERIZATION OF $M(+, \cdot)$ AND $S(+, \cdot)$.

We shall now prove the following

THEOREM 3. For all x, yell x+y = $x \cdot a^{-1} \cdot y$. Moreover 1+1= a^{-1} and M(\cdot) is a direct product of groups of order 3.

PROOF. In fact $x = \bar{x} \cdot a$ and $y = \bar{x} \cdot \bar{y}$, where $\bar{x} = x \cdot a^{-1} eM$ and $\bar{y} = \bar{x}^{-1} \cdot y = a \cdot x^{-1} \cdot y eM$. Then $x+y = \bar{x} \cdot a + \bar{x} \cdot \bar{y} = \bar{x}^{k+1} (a+\bar{y}) = \bar{x}^{k+1} \cdot \bar{y} = x^{k} \cdot a^{-k} \cdot y$. Analogously $y+x = y^{k} \cdot a^{-k} \cdot x$ and hence, since M(+) is commutative, $x^{k} \cdot a^{-k} \cdot y = y^{k} \cdot a^{-k} \cdot x$. Then, by putting y = 1, one has $x^{k} = x$; hence $x \cdot a^{-1} \cdot y = x+y = y+x = y \cdot a^{-1} \cdot x$. Therefore $M(\cdot)$ is a commutative group and $1+1=1\cdot a^{-1} \cdot 1 = a^{-1}$; moreover k-1 is a multiple of the period of x. As a consequence, since also n=2k+1 is a multiple of the period of x, 3=2k+1-2(k-1) is a multiple of the period of x too. Then we can conclude that $M(\cdot)$ is a direct product of groups of order 3.

Conversely it is easy to verify that if $S(\cdot)$ is a direct product of

groups of order 3 then the following theorem holds

THEOREM 4. If we define an operation on S by putting x+y=x·b·y, where

- 4 -

b is a fixed element of S, then $S(+,\cdot)$ is a (2,p)-semifield and $b^{-1} + b^{-1} = b^{-1}$

And now we want to prove that if $S(+,\cdot)$ is a (2,p)-semifield and |S| > 1 then $S(\cdot)$ is a direct product of groups of order 3. This is an immediate consequence of the following two theorems

THEOREM 5. S(+) is a group and a is its zero-element.

PROOF. In fact for all bes one has $b+b=b^{k+1}\cdot(1+1)=b^{k+1}\cdot a^{-1}$; then, since $a^{-1}=a^2=a^p$, $4b=(b+b)+(b+b) = b^{k+1} \cdot a^p + b^{k+1} a^p = (b^{k+1}+b^{k+1}) \cdot a = b^{k+1} \cdot a^p + b^{k+1} a^{k+1} + b^{k+1}$ $=(b^{k+1})^{k+1} \cdot a^{-1} \cdot a = b^{[(k+1)^2]}$. Now then, since the coset k+1+(n) is invertible in $\frac{z}{(n)}(\cdot)$, the element $m = (k+1)^2$ is such that the coset m+(n) is invertible too. As a consequence an element heN exists such that $m^{h} \equiv 1$ (mod n), then $4^{h}b = b^{(m^{h})} = b$. The conclusion now follows in the same way as in the proof of theorem 2.

Q.E.D.

THEOREM 6. The subset M coincides with S.

PROOF. In fact for all xeS one has:

$$1+x=a^{2} \cdot a+a^{2} \cdot a \cdot x=a(a+a \cdot x) = a \cdot a \cdot x = a^{2} \cdot x,$$

$$1+x=a \cdot a^{2}+x \cdot a \cdot a^{2}=a \cdot a^{p}+x \cdot a \cdot a^{p}=(a+x \cdot a) \cdot a=x \cdot a \cdot a=x \cdot a^{2}$$

Then a^{f} is a central element in $S(\cdot)$ and hence $a = (a^2)^{f}$ is central too.

Q.E.D.

Su di una struttura introdotta da I.Szép to be published.