then, since $a \cdot b=b \cdot a$, if $h \in N$ it follows that $2^{h} b=b\left[(k+1)^{h}\right] \cdot a^{l}$, where $\ell \in N$ depends on h but does not depends on b.

Now we recall that the coset $k+1+(n)$ is invertible in $\frac{z}{(n)}(\cdot)$, and hence $\bar{h} e N$ exists such that $(k+1)^{\hat{h}} \equiv 1(\bmod n)$. As a consequence $2^{\bar{h}} b=b \cdot a^{\bar{l}}$, therefore $\left(2^{\bar{h}}\right)^{n} b=\left(2^{\bar{h}} \cdot \cdots \cdot 2^{\bar{h}}\right) b=b \cdot a_{\bar{l}}^{\bar{l}} \cdot \cdots a^{\bar{q}}=b$; then since a is the unique element in S such that $a+a=a$, in the semigroup $M(+)$ b generates a group whose zero-element is a. From this it follows that $M(+)$ is a group since b is an arbitrary element of M.
Q.E.D.

N.2. A CHARACTERIZATION OF $M(+, \cdot)$ AND $S(+, \cdot)$.

We shall now prove the following
THEOREM 3. For all $x, y \in M \quad x+y=x \cdot a^{-1} \cdot y$. Moreover $1+1=a^{-1}$ and $M(\cdot)$ is a direct product of groups of order 3 .

PROOF. In fact $x=\bar{x} \cdot a$ and $y=\bar{x} \cdot \bar{y}$, where $\bar{x}=x \cdot a^{-1} e M$ and $\bar{y}=\bar{x}^{-1} \cdot y=$ $=a \cdot x^{-1} \cdot y \in M$. Then $x+y=\bar{x} \cdot a+\bar{x} \cdot \bar{y}=\bar{x}^{k+1}(a+\bar{y})=\bar{x}^{k+1} \cdot \bar{y}=x^{k} \cdot a^{-k} \cdot y$. Analogously $y+x=y^{k} \cdot a^{-k} \cdot x$ and hence, since $M(+)$ is commutative, $x^{k} \cdot a^{-k} \cdot y=y^{k} \cdot a^{-k} \cdot x$. Then, by putting $y=1$, one has $x^{k}=x$; hence $x \cdot a^{-1} \cdot y=x+y=y+x=y \cdot a^{-1} \cdot x$. Therefore $M(\cdot)$ is a commutative group and $1+1=1 \cdot a^{-1} \cdot 1=a^{-1}$; moreover $k-1$ is a multiple of the period of x. As a consequence, since also $n=2 k+1$ is a multiple of the period of x, $3=2 k+1-2(k-1)$ is a multiple of the period of x too. Then we can conclude that $M(\cdot)$ is a direct product of groups of order 3.
Q.E.D.

Conversely it is easy to verify that if $S(\cdot)$ is a direct product of groups of order 3 then the following theorem holds

THEOREM 4. If we define an operation on S by putting $x+y=x \cdot b \cdot y$, where
b is a fixed element of S, then $S(+, \cdot)$ is a $(2, p)$ semifield and $b^{-1}+b^{-1}=b^{-1}$.

And now we want to prove that if $S(+, \cdot)$ is a $(2, p)$-semifield and $|S|>1$ then $S(\cdot)$ is a direct product of groups of order 3. This is an immediate consequence of the following two theorems

THEOREM 5. $S(+)$ is a group and a is its zero-element.
PROOF. In fact for all beS one has $b+b=b^{k+1} \cdot(1+1)=b^{k+1} \cdot a^{-1}$; then, since $a^{-1}=a^{2}=a^{p}, 4 b=(b+b)+(b+b)=b^{k+1} \cdot a^{p}+b^{k+1} a^{p}=\left(b^{k+1}+b^{k+1}\right) \cdot a=$ $=\left(b^{k+1}\right)^{k+1} \cdot a^{-1} \cdot a=b^{\left[(k+1)^{2}\right]}$. Now then, since the coset $k+1+(n)$ is invertible in $\frac{z}{(n)}(\cdot)$, the element $m=(k+1)^{2}$ is such that the coset $m+(n)$ is invertible too. As a consequence an element heN exists such that $\mathrm{m}^{\mathrm{h}} \equiv$ 1 $(\bmod n)$, then $4^{h} b=b^{\left(m^{h}\right)}=b$. The conclusion now follows in the same way as in the proof of theorem 2.
Q.E.D.

THEOREM 6. The subset M coincides with S.

PROOF. In fact for all $x \in S$ one has:

$$
\begin{aligned}
& 1+x=a^{2} \cdot a+a^{2} \cdot a \cdot x=a(a+a \cdot x)=a \cdot a \cdot x=a^{2} \cdot x, \\
& 1+x=a \cdot a^{2}+x \cdot a \cdot a^{2}=a \cdot a^{p}+x \cdot a \cdot a^{p}=(a+x \cdot a) \cdot a=x \cdot a \cdot a=x \cdot a^{2}
\end{aligned}
$$

Then a^{2} is a central element in $S(\cdot)$ and hence $a=\left(a^{2}\right)^{2}$ is central too.
Q.E.D.
REFERENCE
[1] A. LENZI
Su di una struttura introdotta da I. Szep to be pablished.

