O. Il problema del rimbalzo unidimensionale.

Sia
$$\bar{\Omega} = [0,T]$$
, $f \in L^1(\bar{\Omega};R)$.

Definizione.

Diremo che u, lipschitziana in $\bar{\Omega}$, è soluzione del pdr (problema del rimbalzo) se soddisfa le seguenti condizioni:

(i)
$$u \leq 0$$
 in $\bar{\Omega}$;

(ii)
$$\int_{\Omega} [\ddot{u}(t) - f(t)] \phi (t) dt \leq 0 \quad \text{per ogni} \quad \phi \in C_{o}^{\infty}(\bar{\Omega}; [o, +\infty[)$$

(iii) per
$$u < 0$$

 $\ddot{u} - f = 0$ nel senso delle distribuzioni;

(iv) per ogni $t \in \Omega$ esistono $\dot{u}^{\dagger}(t)$ e $\dot{u}^{-}(t)$; esistono $\dot{u}^{\dagger}(0)$, $\dot{u}^{-}(T)$ e si ha:

$$\frac{1}{2} \left[\dot{\mathbf{u}}^{\pm}(t) \right]^{2} = \frac{1}{2} \left[\dot{\mathbf{u}}^{+}(0) \right]^{2} + \int_{0}^{t} f(\eta) \dot{\mathbf{u}}(\eta) d\eta \qquad \text{per te } \bar{\Omega}$$

(conservazione dell'energia)

Osservazione I - L'esistenza per ogni t e Ω della derivata destra $\dot{u}^{t}(t)$ e sinistra $\dot{u}^{-}(t)$ segue dalla (ii), osservato che la funzione

$$w(t) = u(t) - \int (\int f(\xi)d\xi)d\eta \qquad \hat{e} \text{ concava } e$$

$$f(t) = \int (\int f(\xi)d\xi)d\eta$$
 è derivabile.

Diremo <u>condizioni iniziali ammissibili per il pdr</u> condizioni del tipo

$$u(t_o) = s$$
 , $\dot{u}^{\dagger}(t_o) = b$,

con
$$0 \le t_o < T$$
, $s < 0$, be R oppure

 $0 \le t_0 < T$, s = 0, $b \le 0$.

- § 1. Approssimazioni non convesse per il pdr unidimensionale e teorema di esistenza.
- Sia (u_h) una successione di funzioni per cui si abbia

$$u_{h} \in C^{1}(\overline{\Omega}; R)$$
, $u_{h} \in L^{1}(\overline{\Omega}; R)$

$$\int_{\overline{\Omega}} \left[\ddot{u}_{h}(t) + \psi_{h}(u_{h}(t)) \right] \phi(t) dt = \int_{\overline{\Omega}} f(t) \phi(t) dt \quad \text{per ogni } \phi \in C_{o}^{\infty}(\overline{\Omega}; R).$$

Su f e ψ_h (termine di <u>penalizzazione</u>) facciamo le seguenti ipotesi:

- (1) $f \in L^1(\bar{\Omega};R)$;
- (2) $\psi_h \in C^{\circ}(R;R)$

$$\psi_{\mathsf{h}}(\xi) \begin{cases} = 0 & \text{per} & \xi \leq 0 \\ \neq_{\mathsf{h}}(\xi) \begin{cases} > 0 & \text{per} & \xi > 0 \end{cases}$$

(3) comunque si fissino ξ_1, ξ_2 (con $0 < \xi_1 < \xi_2$)

$$\lim_{h\to +\infty} \psi_h(\xi) = + \infty , \qquad \xi_1 \leq \xi \leq \xi_2;$$

$$\begin{array}{ccc}
(3)_2 & \lim_{\xi \to 0^+} & \frac{\psi_h(\xi)}{\xi} & = + \infty. \\
h \to +\infty & \int_0^{\xi} \psi_h(\eta) d\eta & & & \\
0 & & & & \\
\end{array}$$

(1) Per esempio si può prendere

$$\psi_{h}(\xi) = h(\xi^{3} + |\xi|^{3}).$$

Altri esempi (comprendenti ψ_h non convesse) verranno dati alla fine di questo paragrafo.

Sussiste il seguente

Lemma 1 - Comunque si fissi una condizione iniziale (s,b) <u>ammissibile</u>

per il pdr, ogni successione (u_h) <u>di soluzioni dei proble-</u>

<u>mi</u>

$$\frac{mi}{\int_{\Omega}^{\infty} \left[\ddot{u}_{h}(t) + \psi_{h}(u_{h}(t)) \right] \phi(t) dt = \int_{\Omega}^{\infty} f(t) \phi(t) dt \qquad \text{per ogni} \quad \phi \in C_{\circ}^{\infty}(\overline{\Omega}; R)$$

$$(P_{h}) \qquad \begin{cases} u_{h}(0) = s \\ \dot{u}_{h}^{+}(0) = b \end{cases}$$

verifica le seguenti condizioni

- [A] (u_h) <u>è equilipschitziana (quindi equicontinua) ed equilimitata;</u>
- [B] posto $\alpha_{h}(u_{h}(t)) = \int_{\Omega} \psi_{h}(u_{h}(\eta))\dot{u}_{h}(\eta)d\eta,$

 $\frac{\text{esiste}}{0 \le \alpha_{h}(u_{h}(t)) \le c} \quad \frac{\text{per ogni}}{\text{per ogni}} \quad \text{heN} \quad \underline{e} \quad \text{te} \bar{\Omega} ;$

[C] per ogni $t \in \Omega$ risulta

$$\max_{h \to +\infty} \lim_{h \to +\infty} u_h(t) \leq 0.$$

Dimostrazione.

[A] Da (P_h) si ottiene <u>l'identità dell'energia</u>

$$(\dot{\mathbf{u}}_{h}(t)\ddot{\mathbf{u}}_{h}(t)+\dot{\mathbf{u}}_{h}(t)\psi_{h}(\mathbf{u}_{h}(t)) = \dot{\mathbf{u}}_{h}(t)f(t)$$
 q.o. in $\bar{\Omega}$;

$$\frac{1}{2} \frac{d}{dt} \dot{u}_h^2(t) + \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) + \dot{u}_h(t) = \dot{u}_h(t) + \dot{u}_h(t)$$

(4)
$$\frac{1}{2}\dot{u}_{h}^{2}(t) = \frac{1}{2}b^{2} - \alpha_{h}(u_{h}(t)) + \int_{0}^{t} u_{h}(\eta)f(\eta)d\eta$$
 per $t \in \overline{\Omega}$.

Allora

$$0 \le \frac{1}{2} \dot{u}_{h}^{2}(t) \le \frac{1}{2} b^{2} + \int_{0}^{t} |f(\eta)| |\dot{u}_{h}(\eta)| d\eta \le \frac{1}{2} b^{2} + ||f||_{L^{1}(\overline{\Omega};R)} \cdot ||\dot{u}_{h}||_{C^{\circ}(\overline{\Omega};R)}$$
per ogni $te\overline{\Omega}$ e per ogni heN .

Quindi

$$||\dot{\mathbf{u}}_{\mathsf{h}}||^2 \lesssim b^2+2||f|| \cdot ||\dot{\mathbf{u}}_{\mathsf{h}}||$$
 per ogni heN, pertanto $\mathsf{C}^{\circ}(\bar{\Omega};\mathsf{R})$ $\mathsf{C}^{\circ}(\bar{\Omega};\mathsf{R})$

(5) $||\dot{u}_h||_{C^{\circ}(\bar{\Omega};R)} \leq costante$ (indipendente da h).

Da (5) segue [A] .

- [B] Segue da (4) e (5), tenuto conto dell'ipotesi su f.
- [C] Supponiamo che per \bar{t} e $\bar{\Omega}$ si abbia

max lim
$$u_h(\bar{t}) > \sigma > 0;$$

 $h \to + \infty$

ne segue che per una opportuna estratta di $(u_h(\bar{t}))$, $(u_{h(k)}(\bar{t}))$, riesce

$$u_{h(k)}(\bar{t}) > \sigma > 0$$
.

Allora
$$\sigma$$

$$\int_{\sigma/2}^{u} \psi_{h(k)}(\xi) d\xi \leq \int_{s}^{u} \psi_{h(k)}(\xi) d\xi = \alpha_{h(k)}(u_{h(k)}(\bar{t})) \leq c,$$

contro l'ipotesi (3)₁.

Teorema l - Se (u_h) $(\underline{con}\ u_h$ soluzione del problema (P_h) converge $\underline{uniformemente\ in\ \bar{\Omega}\ ad\ una\ funzione\ u,\ allora\ u\ \underline{e}\ soluzione\ del pdr.$

La dimostrazione si articola in diversi punti. Intanto u è lipschi \underline{t} ziana in $\bar{\Omega}$ (per [A]) ed è non positiva (per [C]).

Proviamo (ii).

Sia $\phi \in C_o^{\infty}(\bar{\Omega}; [o,+\infty[); per ogni heN si ha$

$$\int_{\overline{\Omega}} [u_h(t) - f(t)] \phi(t) dt = - \int_{\overline{\Omega}} \psi_h(u_h(t)) \phi(t) dt \leq 0,$$

quindi

$$\int_{\overline{\Omega}} u_h(t) \dot{\phi}(t) dt - \int_{\overline{\Omega}} f(t) \phi(t) dt \leq 0$$

allora, per $h \rightarrow + \infty$, riesce

$$\int\limits_{\bar{\Omega}} u(t)\ddot{\phi}(t)dt - \int\limits_{\bar{\Omega}} f(t)\phi(t)dt \leq 0, \quad \text{cioé} \quad \int\limits_{\bar{\Omega}} \left[\ddot{u}(t)-f(t)\right]\phi(t)dt \leq 0.$$

Dimostriamo, ora, la condizione (iii).

Per u(t) < 0, $u_h(t)$ è non positiva definitivamente; allora, da (P_h) , \ddot{u}_h - f = 0 (definitivamente) nel senso delle distribuzioni e quindi, per l'ipotesi, \ddot{u} - f = 0 nel senso delle distribuzioni.

Osservazione II - Per u(t) < 0 si ha q.o.

$$\ddot{u}_h(t) = f(t)$$
 definitivamente,

quindi la successione (\dot{u}_h) è equicontinua; poiché (\dot{u}_h) è anche equilimitata (cfr. (5)), la successione (\dot{u}_h) ha una estratta che converge uniformemente.

E' così provata l'esistenza di \dot{u} per u(t) < 0 e la sua continuità. Resta da provare la conservazione dell'energia.

A tale scopo premettiamo alcune proposizioni.

Dall'identità dell'energia (4) e dalla (5), segue che $||\Phi_h||_{C^{\circ}(\bar{\Omega};R)} < \text{costante}; \quad \text{inoltre da}$

$$\Phi_{h}(t) = \dot{u}_{h}(t)\ddot{u}_{h}(t) + \psi_{h}(u_{h}(t))\dot{u}_{h}(t) = f(t)\dot{u}_{h}(t)$$

segue che (Φ_h) è equicontinua.

La tesi segue dal teorema di Ascoli-Arzelà.

Osserviamo che per u(t) < 0 risulta

$$\Phi(t) = \frac{1}{2} \dot{u}^2(t)$$
.

[E] Sia $\tau \in \Omega$ zero isolato di u, allora $\dot{u}^{\dagger}(\tau) = -\dot{u}^{-}(\tau) .$

Infatti, essendo

$$\dot{u}^{-}(\tau) = \lim_{t \to \tau} \dot{u}(t) [= \lambda_{1}] \qquad e$$

$$\dot{u}^{+}(\tau) = \lim_{t \to \tau} \dot{u}(t) [= \lambda_{2}] \qquad per \qquad t_{1} < \tau < t_{2} \qquad si \quad ha$$

 $|\lambda_1^2 - \lambda_2^2| \le |\lambda_1^2 - \dot{u}^2(t_1)| + |\dot{u}^2(t_1) - \dot{u}^2(t_2)| + |\dot{u}^2(t_2) - \lambda_2^2|$

e per $t_1 \rightarrow \tau^-$ e $t_2 \rightarrow \tau^+$, dalla continuità di Φ , si ha

$$\lambda_1^2 = \lambda_2^2$$

Ne segue che $|\lambda_1| = |\lambda_2|$.

E' facile riconoscere (tenuto conto del fatto che u è non positiva) che non può essere $\lambda_1 = \lambda_2$ se non per $\lambda_1 = \lambda_2 = 0$.

Osservazione III - Nelle ipotesi del teorema l, per ogni $\tau \in \Omega$ si ha

(6) $\dot{u}^{-}(\tau) > \max_{h \to +\infty} \dot{u}_{h}^{(\tau)} > \min_{h \to +\infty} \dot{u}_{h}^{(\tau)} > \dot{u}^{+}(\tau)$.

Dim.

Sia
$$t > \tau$$

$$da \quad \ddot{u}_h(t) = f(t) - \psi_h(u_h(t)) \quad \text{q.o.} \quad \text{si ha}$$

$$\dot{u}_h(t) - \dot{u}_h(\tau) = \int\limits_{\tau}^{t} f(\eta) d\eta - \int\limits_{\tau}^{t} \psi_h(u_h(\eta)) d\eta \leqslant \int\limits_{\tau}^{t} f(\eta) d\eta;$$

quindi

$$u_h(t) - u_h(\tau) \leq (t - \tau) \dot{u}_h(\tau) + \int_{\tau} (\int_{\tau} f(\xi) d\xi) d\eta .$$

Pertanto

$$\begin{array}{c} t \; \eta \\ u(t) - u(\tau) \; \leqslant \; (t - \tau) \; \text{min lim $\dot{u}_h(\tau)$+ $\int (\int f(\xi) d\xi) d\eta$} \\ h \; \to \; + \; \infty \qquad \qquad \tau \; \tau \end{array}$$

da cui

$$\frac{u(t)-u(\tau)}{t-\tau} \leq \min \lim_{h \to +\infty} \dot{u}_h(\tau) + \frac{1}{t-\tau} \int_{\tau}^{t} (\int_{\tau} f(\xi)d\xi)d\eta;$$

per $t \rightarrow \tau^+$ si ha

(7)
$$\dot{u}^{+}(\tau) \leq \min_{h \to +\infty} \dot{u}_{h}(\tau)$$
.

Sia ora $\,t$ < $\,\tau$; con procedimento analogo al precedente si ottiene

(8)
$$\dot{u}(\tau) \ge \max_{h \to +\infty} \dot{u}_{h}(\tau)$$

Da (7) e (8) segue la (6).

(cfr. osservazione III).

[G] Se $u(\tau) = 0$ ed esiste un intorno I di τ per cui:

$$u(t) < 0$$
 per $t < \tau$ (per $t > \tau$), tel

$$u(t) = 0$$
 per $t > \tau$ (per $t < \tau$), teI,

allora $\dot{u}(\tau) = 0$

Dim. Intanto nelle ipotesi di [G] è $\Phi(\tau) = 0$.

Se ciò non fosse vero, sarebbe in un opportuno intorno $I^{\circ}(\underline{c}\ I)$ $\Phi(t) > \sigma > 0$. Detto $I_{+}^{\circ} = \{t \in I^{\circ}[t >_{\tau}\}, \text{ si avrebbe } u(t) = \dot{u}(t) = 0$ ed anche, per l'osservazione III, $\lim_{h \to +\infty} \dot{u}_{h}(t) = 0$ in I_{+}° .

Allora per ogni $t \in I_+^\circ$, risulta $\alpha_h(u_h(t)) > \sigma$ definitivamente e, per 1' ipotesi $(3)_2$, $\lim_{h \to +\infty} \psi_h(u_h(t)) = + \infty$.

Inoltre è facile provare che esiste una costante $c^{\circ} > 0$ (indipendente da h) per cui

$$0 \le \int_{t_1}^{t_2} \psi_h(u_h(\eta)) d\eta \le c^\circ \qquad \text{per ogni} \quad t_1, t_2 \in \overline{\Omega}.$$

Sia, ora, m il più piccolo intero positivo maggiore di $\frac{2~c^\circ}{t_2\text{-}t_1}$, essendo $[t_1,t_2]~\textbf{c}~I_1^\circ$.

Consideriamo la successione di funzioni, misurabili e limitate,

$$\{\psi_{h}(u_{h}(t))\}^{m} = \begin{cases} \psi_{h}(u_{h}(t)) & \text{se } \psi_{h}(u_{h}(t)) \leq m \\ \\ m & \text{se } \psi_{h}(u_{h}(t)) > m \end{cases} ;$$

tale successione converge puntualmente alla funzione costante m.

Riesce inoltre

$$\int_{t_1}^{t_2} \{\psi_h(u_h(t))\}^{m} dt \le \int_{t_1}^{t_2} \psi_h(u_h(t)) dt \le c^{\circ} \qquad \text{per ogni heN.}$$

Per il Lemma di Fatou si ha $m(t_2-t_1) \le c^\circ$; quindi un assurdo. Ora, da $\phi(\tau)=0$ segue che $\lim_{t\to \tau^-}\dot{u}^2(t)=0$ e perciò $\lim_{t\to \tau^-}\dot{u}(t)=0$

Ne deduciamo così l'esistenza di $\dot{u}(\tau) = 0 = \dot{u}(\tau)$.

Osserviamo esplicitamente che è anche $\phi(t) = 0$ per teI, $t > \tau$.

[H] Se
$$u(\tau) = 0$$
 e τ è d'accumulazione di zeri di u , allora $\dot{u}(\tau) = 0$.

In questo caso esiste una successione di punti (ξ_h) per cui

$$u(\xi_h) < 0$$
, $\dot{u}(\xi_h) = 0$ e $\lim_{h \to +\infty} \xi_h = \tau$.

Ne segue che
$$\lim_{t\to\tau}\phi(t)=0=\lim_{t\to\tau}\left[\dot{u}^-(t)\right]^2=\lim_{t\to\tau}\left[\dot{u}^+(t)\right]^2.$$

Osservazione IV.

Da quanto provato in [D]-[H] segue che:

$$\Phi(t) = \frac{1}{2} [\dot{u}^{\pm}(t)]^2 \quad \text{in} \quad \bar{\Omega} ,$$

 $\lim_{h\to +\infty} \dot{u}_h = \dot{u} \qquad \text{q.o. in} \qquad \bar{\Omega} \quad ((\dot{u}_h) \text{ non convergendo, eventualmente,}$ negli zeri isolati di u).

Dall'osservazione precedente segue la condizione (iv). Infatti, per il Teorema di Lebesgue, dalla (4)(passando al limite, per $h \rightarrow + \infty$, per una opportuna estratta, cfr. [D]) si ottiene

$$\frac{1}{2}[\dot{\mathbf{u}}^{\pm}(t)]^2 = \frac{1}{2}b^2 + \int_0^t f(\eta)\dot{\mathbf{u}}(\eta)d\eta \qquad \text{per } t \in \overline{\Omega} .$$

Da quanto provato segue il teorema 1.

Osservazione V -

Da quanto dimostrato risulta che se sopprimiamo l'ipotesi (3)₂, la (iv) può essere formulata solo in questi termini:

"esiste una funzione $\Phi(t) > 0$, uniformemente continua, per cui

$$\frac{1}{2}b^{2}+\int_{0}^{t}f(\eta)\dot{u}(\eta)d\eta = \Phi(t)$$

$$\Phi(t) = \frac{1}{2}\dot{u}^{2}(t)$$
con
$$per u(t) < 0 ".$$

Corollario.

Nelle ipotesi poste, per ogni dato iniziale (s,b) ammissibile per il pdr esiste almeno una soluzione del pdr in $\bar{\Omega}$ con dati iniziali (s,b); essa è limite uniforme in $\bar{\Omega}$ di una successione (u_h) di soluzioni del problema (P_h).

Dim.

Per la [A] del Lemma I, fissata una qualsiasi successione (u_h) (di soluzione di (P_h)) esiste una estratta uniformemente convergente in $\bar{\Omega}$ ad una funzione u, soluzione del pdr in $\bar{\Omega}$ (per il Teorema 1).

Osservazione VI - Si riconosce facilmente che l'ipotesi (3)₂ può essere sostituita dalla seguente

(3)₂. Esiste
$$\Theta_h(\eta)$$
, crescente in η , tale che
$$\Theta_h(\alpha_h(\xi)) \leq \psi_h(\xi) \quad \text{e per } \eta > 0 \quad \lim_{h \to +\infty} \Theta_h(\eta) = + \infty.$$

Diamo alcuni esempi per la scelta dei termini di penalizzazione ψ_{h} verificanti (3)₁ e (3)₂.

1) Sia, per ogni heN,

$$\psi_{h}(\xi) = \begin{cases} 0 & \text{per } \xi \leq 0 \\ h(\sum_{i=1}^{n} a_{i} \xi^{i}) & \text{per } \xi > 0 \end{cases}$$

con $a_i > 0$, per ogni i = 1,2,...,n.

2) Sia, per ogni heN,

$$\psi_{h}(\xi) = \begin{cases} 0 & \xi \leq 0 \\ h \xi^{1/2} & 0 < \xi < 1 \\ h \xi & 1 < \xi \end{cases}.$$

Illustriamo, infine, un caso per cui si verifica $(3)_1$ e $(3)_2$.

3) Sia $veC^1(R;R)$ con $v(\xi) = 0$ per $\xi \leq 0$.

Supponiamo che $\lim v(\xi) = + \infty$ e $v(\xi) \le \dot{v}(\xi)$ per ogni ξ . $\xi \to +\infty$

Allora $\psi_h(\xi) = h\dot{v}(h\xi)$ verifica (3)₁ e la (3)₂, con $\Theta_h(n) = hn$.

§ 2. Ulteriori proprietà delle soluzioni del pdr.

Nella ipotesi $f \in C^{\circ}(\bar{\Omega}; R)$ per le soluzioni del pdr di cui al teore ma l, sussistono i seguenti fatti:

[I] Se per $\tau \in \Omega$ si ha $u(\tau) = \dot{u}(\tau) = 0$ ed $f(\tau) < 0$, allora τ è uno zero isolato di u ed inoltre $\ddot{u}(\tau) = f(\tau)$.

Dim.

Per la continuità di f e l'ipotesi $f(\tau) < 0$ si ha che esistono $\eta < 0$, $\delta > 0$ tali che per ogni h e N e t e] $\tau - \delta$, $\tau + \delta$ [si ha $\ddot{u}_h(t) < \ddot{u}_h(t) + \psi_h(u_h(t)) = f(t) < \eta < 0$; in definitiva, per heN e

 $t \in \]\tau$, $\tau + \delta [\ , \stackrel{..}{u}_h(t) < \eta < 0.$ Allora per $t \in \]\tau, \tau + \delta [$, risulta

$$\dot{u}_h(t) - \dot{u}_h(\tau) < \eta \quad (t-\tau)$$
 e quindi

(9)
$$u_h(t) - u_h(\tau) - (t-\tau)\dot{u}_h(\tau) < \eta - \frac{(t-\tau)^2}{2}$$
.

Essendo $\dot{u}(\tau)$ = 0, è anche $\lim_{h\to +\infty} \dot{u}_h(\tau)$ = 0; pertanto da (9), per

(10)
$$u(t) \leq \eta \frac{(t-\tau)^2}{2} < 0 \quad \text{per} \quad t \in]\tau, \tau + \delta[.$$

Analogamente si ha

 $h \rightarrow + \infty$, si ottiene

(11)
$$u(t) \le n \frac{(t-\tau)^2}{2} < 0$$
 per $t \in]\tau - \delta, \tau[$.

Da (10) e (11) segue la tesi, tenendo anche conto della continuità di f.

[L] Sia
$$\tau \in \Omega$$
 tale che $u(\tau) = \dot{u}(\tau) = 0$;

- (j) Se $f(\tau) > 0$ allora τ è zero interno agli zeri di u.
- (jj) Se $f(\tau) = 0$ τ può non essere zero isolato. In ogni caso risulta $\ddot{u}(\tau) = 0$

Dim.

(j) Non può esistere un intorno τ in cui $u(t) \neq 0$; in questo caso, si otterrebbe, per un opportuno intorno di τ , u(t) > 0 .

In base a ciò, per provare quanto asserito, basta riconoscere che τ non può essere uno zero di accumulazione per zeri isolati di u. Se, allo ra, τ fosse di accumulazione per zeri isolati di u, esisterebbe una suc cessione (ξ_h) con $\dot{u}(\xi_h) = 0$ e $\lim_{h \to +\infty} \xi_h = \tau$; siccome in un opportuno $\lim_{h \to +\infty} \dot{u}(\xi_h) - \dot{u}(\tau)$ torno di τ è $\ddot{u}(t) = f(t)$, ne segue che $f(\tau) = \ddot{u}(\tau) = \lim_{h \to +\infty} \frac{\dot{u}(\xi_h) - \dot{u}(\tau)}{\xi_h - \tau} = 0$.

Pertanto τ è zero interno agli zeri di u.

- (jj) E' sufficiente provare che sono vere le seguenti asserzioni:
 - Se τ è minimo relativo per f, allora τ non è zero isolato per u.
 - <u>Se</u> τ è massimo relativo proprio per f, allora τ è zero isolato per u.
 - Se lo fosse in un opportuno intorno J di τ , si avrebbe $\ddot{u}(t) = f(t) > 0$; integrando si ottiene u(t) > 0 in J.
 - = Per l'ipotesi su f, esiste un intorno J di τ, per cui

(12)
$$f(t) < 0 \quad \text{per } t \in J \setminus \{\tau\}.$$

Se esistesse un intorno $J_1 \subseteq J$ in cui u(t) = 0, si otterrebbe, per [I], che tali punti sono zeri isolati di u. Ne segue che per provare l'asserzione basta provare che τ non è punto di accumulazione per zeri

isolati. Se lo fosse, dovendo essere $\ddot{u}(t) = f(t)$ in un opportuno intorno di τ , si otterrebbe f(t) > 0 per qualche punto in J.

Si riconosce che, comunque, è
$$\ddot{u}(\tau) = 0$$
.

§ 3. Problema dell'unicità.

Esempio di non unicità.

Diamo un esempio di non unicità per il pdr unidimensionale con f di classe $C^{\infty(2)}$.

Per la costruzione è utile la seguente considerazione di facile verifica.

Sia $heC_o^{\infty}(R; [0,+\infty[), soddisfacente le condizioni$

(a) h*v è convessa se v è convessa ,

(b)
$$h*v = v \quad se \quad v(t) = a t + b .$$

Consideriamo ora $\frac{u(t)}{v_n(t)}; \quad \frac{w_n(t)}{v_n(t)}$

⁽²⁾ Il fenomeno di non unicità ci è stato segnalato (oralmente) dal prof. L. Amerio.

$$W_{n}(t) = \max\{2^{-(n+1)^{2}}(2^{-(n+1)} - t); \ 2^{-n^{2}}(t-2^{-n})\} \quad \text{per } 2^{-(n+1)} \le t \le 2^{-n}.$$
 Sia
$$heC_{o}^{\infty}(R; [0, +\infty[) \text{ con } h(t) = 0 \text{ per } |t| \ge 1, \ \int_{-1}^{1} h(t)dt = 1$$

$$\int_{-1}^{1} t \cdot h(t)dt = 0$$

Per ogni neN poniamo $h_n(t) = \alpha_n h(\beta_n t)$ dove è

$$0 < \beta_n \le 5^{-1} \cdot 2^{-(n+1)} \cdot (1+2^{2n+1})^{-1}$$
 ed α_n tale che $\begin{cases} h_n(t)dt = 1. \\ R \end{cases}$

Posto
$$u(t) = (h_n * W_n)(t)$$
 per $2^{-(n+1)} \le t \le 2^{-n}$, risulta $u(t) \le 0$.

Inoltre esistono
$$(\gamma_n)$$
, (δ_n) con $2^{-(n+1)}$ < γ_n < δ_n < 2^{-n}

per cui
$$2^{-(n+1)} \le t \le \gamma_n$$
 e yesupp $h_n : W_n(t-y) = a_n(t-y) + b_n$,

$$\delta_n \le t \le 2^{-n}$$
 e yesupp $h_n : W_n(t-y) = a'_n(t-y) + b'_n$.

Ne segue, cfr. (b),

$$u(t) = W_n(t)$$
 per $2^{-(n+1)} \le t \le \gamma_n$ o $\delta_n \le t \le 2^{-n}$.

Inoltre per la (a) $\ddot{u}(t) \ge 0$. E' altresì evidente che $u(0) = \dot{u}^{\dagger}(0) = 0$. Posto, in [0,1], $f(t) = \ddot{u}(t)$, f risulta traccia di una funzione di classe C^{∞} . Consideriamo il pdr in $\bar{\Omega} = [0,1]$ col dato f e condizione inizia le ammissibile (0,0) nello zero.

E' evidente che la funzione u(t) precedentemente costruita è soluzione di questo pdr con le condizioni iniziali assegnate. E' facile altresì provare che la funzione identicamente nulla è anche soluzione dello stesso pdr.

§ 4. Alcune condizioni sufficienti per l'unicità della soluzione del pdr.

Sussiste il seguente

Teorema 2. Se f è costante a tratti in $\bar{\Omega}$, allora il pdr ammette una unica soluzione in $\bar{\Omega}$ verificante un assegnato dato iniziale ammissibile (s,b).

Dim.

E' sufficiente provare il teorema per f(t) = c in $\bar{\Omega}$. Per c = 0 'unicità è ovvia; sia allora $c \neq 0$. Se u è soluzione del pdr verificante le condizioni u(0) = s, $\dot{u}^{\dagger}(0) = b$, si ha (dalla (iv))

(13)
$$\frac{1}{2} \left[\dot{\mathbf{u}}^{\pm}(t) \right]^2 = \frac{1}{2} b^2 - s c + c u(t) \qquad \text{per } t \in \overline{\Omega}.$$

Da (13) ricaviamo, per u(t) = 0,

[
$$u^{\pm}(t)$$
]² = b^2 - 2 s c .

La tesi consegue, allora, in virtù di noti teoremi di unicità locale, dalle seguenti osservazioni.

1. Se è b^2 - 2 s c > 0, <u>tutti gli eventuali zeri di</u> u <u>sono isolati</u>; inoltre se τ_1 e τ_2 sono due zeri consecutivi $(\tau_2 > \tau_1)$ si ha:

(15)
$$c(\tau_2 - \tau_1) = 2\sqrt{b^2 - 2 s c}$$
;

da cui

(16)
$$\tau_2 - \tau_1 = \frac{2}{c} \sqrt{b^2 - 2 s c} .$$

Da (15) segue che (c)per c<0 u ammette al più uno zero,(d) per c>0 gli zeri consecutivi di u sono equidistanti (e quindi sono in numero finito).

- 2. Se è $b^2 2 s c = 0 si ha$
 - (e) c > 0: u(t) > 0 e quindi u(t) = 0 (per (13));
 - (f) c < 0 : u ammette al più uno zero.

Per provare che (f) è vera, basta tenere conto che si ha: u ha solo zeri isolati e non può avere più di uno zero isolato; che u non possa avere più di uno zero isolato segue da (15); che abbia solo zeri isolati segue dal fatto che negli zeri τ di u è $\dot{u}(\tau)=0$ ed $f(\tau)<0$. Evidentemente u non ha zeri se b^2-2 s c <0 .

La dimostrazione del teorema 2 suggerisce il seguente risultato.

Teorema 3. Se u_1 ed u_2 hanno entrambe un numero finito di zeri e sono soluzioni in Ω del pdr con dato $f \in C^{\circ}(\Omega; R)$ e stesse condizioni iniziali ammissibili (s,b),allora coincidono in Ω .

Dim.

Basta tenere conto del fatto che per i problemi di Cauchy del tipo

$$\begin{cases} \ddot{u}(t) = f(t) \\ u(0) = s \end{cases}$$

$$\begin{cases} \dot{u}(t) = f(t) \\ u(\tau) = 0 \\ \dot{u}^{\dagger}(0) = b \end{cases}$$

$$\begin{cases} \dot{u}(t) = -\dot{u}^{\dagger}(\tau) \end{cases}$$

c'è unicità locale. 📱 Sussiste inoltre il seguente

Teorema 4.

Se u è soluzione del pdr in Ω con fe $C^{\circ}(\Omega;R)$ e verifica la condizione

"esiste p>0 tale che $\left[u^{\pm}(\tau)\right]^2 > p$, per u $(\tau) = 0$, allora u è l'unica soluzione del pdr.

Dim.

La condizione posta assicura che gli eventuali zeri di u sono isolati. Iroltre, per f > 0, (3) considerando due zeri isolati consecutivi τ_1, τ_2 , s ha

$$\ddot{u}(\xi)(\tau_{2}^{-\tau_{1}}) = f(\xi)(\tau_{2}^{-\tau_{1}}) = \dot{u}^{-\tau_{2}}(\tau_{2}) - \dot{u}^{+\tau_{1}} =$$

$$= |\dot{u}^{-\tau_{2}}| + |\dot{u}^{-\tau_{1}}(\tau_{1})| \ge 2\sqrt{p} > 0.$$

Da ciò

(77)
$$\tau_2 - \tau_1 \ge \frac{2\sqrt{p}}{f(\xi)} \ge \frac{2\sqrt{p}}{M}$$

dove $M = \max_{x \in \Omega} f(x)$.

La (17) assicura che siamo nelle ipotesi del teorema 3.

Concludiamo col

Teorema 5. Sia $f \in C^{\circ}(\bar{\Omega}; R)$ con $f \in L^{1}(\bar{\Omega}; [0, +\infty[);$

- (g) Se f(0) > 0, per ogni condizione iniziale ammissibile (s,b) \neq (0,0), esiste una unica soluzione del pdr in $\bar{\Omega}$.
- (h) Per ogni condizione iniziale ammissibile (s,b) verificante la disegua-glianza b^2 -2sf(0)>0 il pdr ammette una unica soluzione in $\bar{\Omega}$.

Dim.

Dalla conservazione dell'energia segue

(18)
$$\frac{1}{2}[\dot{u}^{\pm}(\tau)]^{2} \ge \frac{1}{2}b^{2} - s f(0). \quad per u(\tau) = 0.$$

(g) Dalla (18) segue l'unicità in virtù del Teorema 4.

 $^(^3)$ Osserviamo esplicitamente che se $f \le 0$, c'è unicità per la soluzione del pdr, essendoci al più uno zero per u.

(h) Intanto è $(s,b) \neq (0,0)$.

Se f(0) > 0 si ricade nel caso (g);se f(0) < 0, si ha che per f(t) < 0 u ha al più uno zero e per f(t) > 0 valgono le considerazionni di (g).

Per il Teorema 5 si può prendere ad esempio

$$f(t) = a t + 1$$
 con $a \ge 0$, $te[0,T]$, oppure
$$f(t) = \sum_{i=0}^{n} a_i t^i \qquad a_i \ge 0 \ (i=0,1,...n), \ te[0,T].$$