-1 -x ° (1-a) s -t
(8.10) D(a-1,x) ~x* Te™® 7 (-1)% s |gp _t e
5=0 s1x> 1-e” (X*H)
JG

9. SOME FUNCTIONAL RELATIONS.

It is easy to show that
| - _-¢.., =(P+1) ) » : ,
ALY ) =x0 e IR fi R

(9.1) | -
¥ [ Y (w8 %) = Fltryp g x)- [ i< B8 <}

In fact, we have

..).: Jr ;
— _(SJ X o= 1= --—- J(."‘
(9.2) %—L (=, @arx)j«-- érf‘m;ﬂf / ""D =( ) )

The result (9.1) is thus achieved with the help of the

recurrence relation (4.5).

Putting f = -‘A"B’P , Ea. (9.2) takes the form

ﬁ-—[ x-(wgﬁ)q/(pcluﬁb’f' x.)-_\ =YX
(9.3)

. [L}’(d 1-1}”{%! ¥ x) - y/(w-}f‘/ J- f}‘)() '-f' %ﬂ;ﬁr J~ 1;%):’/

which for ¥ = 1 becomes the well-known functional relation

for the incomplete r1-function. "

!

~ . ~(«= (> 1)
O )= e )



....4" -

where ]ﬂ(ni-u(’)f x)= L//(ogﬂ, 1, ")/
and o, 0,0, x) = 0.

Following the same procedure used in deriving Ea. (9.1)

one can also demonstrate the more complicated relation

TSP *[ATT
AJ Flo %)) = ¥n LT e £ 6x) - RT3l 1,
K

{

(9.4) - ZUFB(),f-wlN’(d-t—f‘,‘/}f -1, ,x)-l-[d’——fj(ﬁrqu/(g(-rc?mé y-2, x) +
o U -8ty 0o o Yl 72 7]

One could at this point look for a general expression
~(d=P) .
for the n-th derivative of the function x_( P 47%wﬁ,3yﬁj

with respect to x. This task is auite cumbersome: here we

limit ourselves to provide such a aeneralization for the

case j%r= 0 (the parameters ¢ and ﬁrbeing left free).
To this ephd, setting in (9.3) hﬁ= 0 one has

v

- 3‘% I ()] = x-cm-z K(drt, ;%) =K (ert, o x)]/

where the symbol K( { ,B/;x) stands for the function\j’( s 0, X ix)

Now with the help of Ea. (9.5) we obtain

-:-Lf #K 4y x)] = X Lot K2, ) +
(9.6)
+ Y(1-2%) K(#+2, a‘—-ix')(')_(),((r"ij(HIT'}'.X‘Z} x)] |

In the same manner we can write agenerally



_42 -

h » . N (im) . (%)K
0.1 B ]« SO e e M

r |
- - g aja )K[MT%;X“&;'K)J/

where the coefficients a ng

- (1=0,1,2,...,n) have to be de-

termined.
In doing so, let us differentiate the expression (9.7)

with respect to x. Using the result (9.5) one gets

n +i - -

- oAy - ~(X+ N +1) (M), |
d - L= K(—J/‘X"x)_]: X {*d/ﬁﬂ K/a@'}l*'fu:(/')(/*—
dx™r

(M)

- (n)
-8 i
(9.8) ‘*‘L Y A (y-1] &G

-1

]K(di—'ﬂffj r-1'x) +
L e W)

M-2
('m)
i (J’m)aa '

On the other hand, comparing (9.8) with the expression
which one obtains from (9.7) replacing n by n+l, we are led

to the following relations

(9.9) a(:ﬂ) - - ga(:)
(9.10) a(";]) - (¥ - n) a(z) ,
and

9.1 a M ey M iy (M)

n-1 n-i

where 1 = 0,1,2,..., n-1.,

The coefficients a(n)and a(n)

" ) are easily found.

Indeed, iterating (9.9)



_43 -

(9.12) a(E:;) - -1y ™

1
where the relation a(]) = - Xﬁ has been used. Eas.(9.12)
and (9.9) aive

(9.13) (M) . -n"y".

N

Now from (9.10) we deduce that

El(t;]) - (X_n)a(z) - (K'n)(a/'ﬂ'F‘l) a(;'l) - -

(9.14)
= (B/—n)(x-n+-|)...(b/‘])b/ ’
where we have substituted a(;) = )/. Eas. (9.14) and (9.10)
yield
(9.15) a(z) = (K’—nﬂ)(y’-n+2)...(5’-1)3’r = r‘(3’+1) :
7 (y -n+1)
Let us now calculate the coefficients a(:_1.

To this end, consider the relation (9.11) for i=0, i.e.

(9.16) a'"1) )’a(:) - (X -1) ai?% .

n
By iteration and with the help of (9.13), from (9.16)

one has
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Since the expression between the sauare brakets is a geometrical

proaression of the ratio -1)/{ (9.17) yields

(9.18) (M+1) _ (‘])HXLYHH ) (X_])nﬂl |

n

Finally from (9.18) and (9.16) we obtain

(9.19) a(”) = (—l)nX[: (3’-”” -ci’n.]-

n-1
| | ,
OQur purpose now is to calculate the coefficient ai_z

for any i=0,1,2,.... n=-1. To this end, we start from

(9.11) and iterate aﬁ?%_].
We have
tn&1) B . (n) . (n)
n-i (¥ -1) - (§ -i-1) T-i-1 i

I
(o)

K-y -enfen

. (_])n—i (5,_1_])n-1 a(1'+1)

0

Finally, Ea. (9.20) gives
m-1-K,

k k
R 1+1)Z ook “ (F-i) (-1 e

+ (_.I)ﬂ"l



where
. | Y
(9.22) a(;) = [ (J+1) , 1. = 0,1,2,...,n-1.
7 (¥ -i+1)
To derive explicitly the coefficients aﬁ?% in terms
of n, i and ¥ , we use repeated iterations of (9.21). To

facilitate our task, it is advisable to take into account
that: the index 1 appearing in (9.21) can be interpreted

as the difference between the upper and lower indices of
(n )«M(*“.‘L -L)

the coefficients a \fEn be regarded as the lower index

n-1l
n .
of ai_g. Hence, 1n virtue of these considerationsfrom (9.21)

we deduce that:

-c-k.-1 .
1-ko) K 2-h-k by R
(=t F—L#Z)z a/(""— 2 ff 2/ ((—b‘f“) (- 1) +

"VL"L-"'L?..' L'k"l KZ
(9.23) hy=0
n-¢ - Ky “ ’?l--t;"kf (e=1)
t (-1) (-0 +1) &L, y
for i 2 2.
Inserting (9.23) into (9.21), we obtain:
m-c - B -1
noe-t g, b,
—{J’-—r_, +11‘r L-}-..;_,)Z{A/' )('1) & (d”f—"‘")
(9.24) s £y=0 £y =0
/!:-2’ (')1"'2"11’ /’Z).)
e (-1) a4 -
M~ ¢ "}2-1"&2/
%:_E_#.‘L ﬁf ’?L-t: | ,.-n_..;_: ~ k”.f ('L:__.,)
-l-(a’—[,.,.:) Z (J'-t:) (1) {,‘f-b +1) CQ.,O e
R, =0
- ¢ (v)

e GO ) )
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After (i-1) iterations (i 2 2), Ea. (9.21) yields
| noest kR,

@j%J -'( | Y, S _ i
., - tr—t.?f)(ﬂ'-:.i-z’)...((_”a/_ Z (y-:) (1)
ﬂf:O‘
4’1-1.:-& -1 N-c - E‘f“é’m LI
Z_ 1 | ﬁz )‘?‘?, m3lq };?‘ é {M-I:- z ém)
., (§-cr1) (1) L N a2

.'.'.O - ‘L:_ v ﬁ

k"’ té‘::o (n mZ:'f m |

9.
(9.25) B 420
ﬂ"f-:' _..HZ=-, ém L~ 1
iy mei— & R
e (¥-2) (&-1) m =1 N
&J-’l =0
m=-c =1 k
£, n-v ="y »
n-t E (L -1)
I (-—‘f) (X-L't'!) (§-¢) (X"‘-r"") Q.a +
R,=
n-1 ;m-—r (¢)

Taking account of

{"h-{_‘_ Z—EM) M=t —*Z—iéml "-i -_mz: f_”h
(926) Q. m=1 _:(_1) m=i - )/ =1



J=1
(9.29) N
+ (-1)
m-t (§+1)
= (-1) A
7 (Y-et1)

N —L

+ (X>¢)

: [’ (XH)
[T (xy -i+1) ’
)(¥-i+2) ... (Y'-1Y,
(9.25) can also be written as

¢-1 Y
n - f"zT/h
E [d’-cffff} (Ci' J) i

—-—
-—'

/g_c;%'Lj

¢.-1

/Z(m)

A
——

-—3 ,,,,,-zé

2 (y-u+ b ’) (J’J)




Finally, using the notation

{-1
(9_30) D{néb = (%'1)(1'4; J - 9(8’2) 2_ é’m /

where :J}j 1s Kronecker's symbol and

(9.31) 9{{2,2): .

(n)
n-i
pressed in the more compact form

the coefficient a as aiven by (9.29) can also be ex-

n) [lyr1) ) Znbery
(n Mo +1 3 s
(9.32) Q  =(-1) ~ Z-(d’c}) 7——_ Z (¥ ff‘f)(zr)
M- /ty L+1}J {=z1-v ‘J' :
where 1 = 2,3,..., n-1.

In virtue of (9.13), (9.15), (9.19) and (9.32), we have

determined explicitly the expression (9.7) for the n-th
derivative of the function x k(,( =r3/3")-

Remark 9.1

For g’- 1, (9.7) reduces to the functional relation
for the incomplete rq -function

[x'dr'(a x)J (-1) X

-(x*M) 4

(9.33) 7 (x4, x)

In fact, when X = 1 from (9.13) and (9.15) we have

: n
resepctively aﬁ?g (-1) and a(g) = 0. Furthermore, Ea.
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(9.21) yields aé?g
(9.33) thus follows immediately from (9.7).

We point out that for ¥ = -1, Egs.(9.13), (9.15) and

= 0 for 1 = 1,2,..., n=1. The result

(9.19) become respectively

(9.34) a(:) = 1,

(9.35) a(;) = (-1,
and

(9.36) aé?% = 1 -2"

On the other hand, from (9.32) we have that

(n) : : M- dﬂe”“c{ . He ! "l?fl
(9.37) a l. =il Z_(—f) (1+) ) ﬂ_ (2+¢-€) (i+7) )
J:O ‘e,_._.i_J:d.'

for 1 = 2,3,..., n-1.

Since (see ( &,3))

(9.38) K (odi-15x) = - D(o/-1,x),

with the help of (9.34), (2.35), (9.36) and (9.37),. Ea.(9.7)
gives a relation for the n-th cerivative of the function

oA
x D{ed-1,x), where D(e{ -1,x) is the Debye function defined

by (6,3 ). As far as we know, this formula is new.

We close this Section by noticing that, analogous to

the manner in which we derived (9.7), one can obtain a
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formula for the n-derivative of the function emx}fr{cf,af;x).

40 - ANOTHER RECURRENCE FORMULA.

The use of ( H.1) and ¢ = relation (9.1) allows us to
write down another recurrence formula besides (‘?ni),

In fact, by integrating term by term (9.1) with -j’:/¢
and aFFeying (5.1), we find the foflowing relation:

(uta-vyB8)y(atusBsysX)=yu(atu+T,8,v3X) +yy(atu+l ,8,y-13x) +

, -

u

+yBY(atu,B,y-15x) + X [(-a+ys) ¥ (a,B.y3X) +

-

(40-1)

+"le({]+] !B!T;x) 'Ylb(ﬂ"'] !B ,T‘];X) 'YBIJJ(GL!B 3Y-];x)-| = G.

Remark 10.1

When 3/= 1, Ea. (40.1) gives the well-known recursive

relation for the incomplete {7’ -function:

U

(u+a) T (a+u,x) - Tr(a+u+l,x) + x |r(a+1,x) -

(10.2)

]
o)
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