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7. ASYMPTOTIC BEHAVIOUR OF ¥ (ol ,f®,¥ ;x) for x —> 0O

In order to derive the asymptotic behaviour of ¥ (& _.,P , X ;x) for
large x, we recall for the sake of convenienc: the following generaliza-

tion of Poincar€'s definition of &« asymptotic expansion [21] :

DEFINITION 7.1 " A sequence {_#S(x)i of functions such that

(x)
(7.1) q)s-%—l ) - 3
¢ (x)
S
for x =» + <O and any s = 0,1,2, ...., is called an asymptotic

sequence or scale as X «-» + 00

Consider now a scale H?S(x)} as x » + o0 , and let f(x),
fn(x) (n =0,1,2,...) be functions such that for every non-negative

integer N, the quantity

N-1
f(x) - 2. f_(x)
(7-2) s=X)
¢’N(X)
is bounded for x =~» 4+ oo .

Then the series SZ_ o fs(x) 1s said to be a generalized asymptotic

expansion with respect to the scale {Cbs(x)} , and one writes

o o
(7-3) f(x) N/ z fS(X)'; {CPS(X)} as X ._)*m , N
s=0

The following theorem holds:



THEOREM 7.2 "The function

( a-L} E-t Y
(?'4) I,UCD‘.,B,Y;K) = Idt t |l-(l- ) (X}O)
J ! B ’
X 1_ t _
admits the asymptotic behaviour
S _l - *®
(7.5) p(a,B,y;X) ~ X : e ) A (x) —%— ;
S S
s=0 X

for x - + », in the generalized sense of Poincaré (see

Det. 7.1) with respect to the scale {—é—} , Wwhere
X

mx

] _ 44+l 1 - F(m+l-y)T (s-a+(m+1)g+1)e
7.0 AL - (0T g ] P
m=0 (m+1)!(m+1)” T (-a+(m+1)8+1)X

the series on the right of (7.6) being uniformly convergent for any

- : : : =X .
X > X, where Xx 1s such that the 1nequality e < XB 1S

verified'.

The proof of this theorem will be obtained with the

help of a few lemmas. More specifically;

Lemma 7.3. " The following inequality holds:
N-1 m-1
(7.7) |t o g ettt Mzl .
m=1 r(l-e) (m-1)!
y 1 ' (N-a) yN—l e]u-N\y ’
(N-2) ! r(l=-a)

where y > 0 ",



Proof. Recall first that, as 1s known, 1f f(y) 1is a

function having continuous uerivatives up to the (N-1)-th

order enclosed, then

N-2 f(g) k 1 ’ N-1 N -2
(7.8) f(y) - ) (O) y = [f(" J(t)(y-tJL-"dt.
k=0 k! (N=2)! 0

If we deal with the case f(y) = (1+y)u-1 and put k=m-1,

Eq. (7.8) gives rise to the i1inequality

N-1 m-1
(7 .9) ‘(1+Y)u-1 Sy (™1 Imoo) y .

m=1 r¢(l-oa) (m-1)!

(Y - \l -
5 — | ar e oy
(N-2)! o
where
(7.10) f(N"lJ(t) = (-1)N"1 [(N-0) (1+t)“'N.
r(l-a)
t

Since 1+t < e for any t such that O < t < y, the

assertion comes out immediately from (7.9).

Lemma 7.4. " Let N be a positive 1nteger such that x;zﬁﬂ%m.

N-1
F(m,x)x_aex - ) [—1)m_l r(m-) —é“ <
(—7 11) m=1 F(l-{l) X
'(N-a) 1

A

(N-1)

P(l-o) [}(—[a-\T iI,:] |
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for every x > | o = N |",

Proof. Consider the Laplace transform

( -
(7.12) | dze “%f(2)
JD
where
. N P(m-a) ] -1
(7.13) f(z) = (1+z)%" ' 7 (-1) H\R-e z
m=1 r{(l-a) (m=1)"
In virtue of Lemma 7.3 one has
(® . -
(7.14) | |dz e “"f(z)| < (n1) |[LiN=o) L —
)6 r(1=a) | |[X=|a=N]
for x > | a-N]J.
On the other hand, we can write
ST “o X L mr(m-a)
(7.15) | dz e ""f(z)=x e'r(a,x) - ) (-1)
)6 m=1 P(1-a) x
where
o0

[

(7.16) (of s x) = xde*x dz eﬁzx(1+z)d_].

/
/

0

The Lemma follows then from (7.15) and (7.14).

Lemma /.5. "Let N be a positive integer such that N>2and

(7.17) A (x)=(-1)°*T ]

P(m&]it)r(sﬂa+(m+[)s+])e“

mX

W ~— §

r(-vy)

° (m”)1(“‘+])5+1F(]'ﬂ+(m+1)B)xmB

3



where a,B and y are fixed parameterc.

Then, 1f € 1s any arbifrary positive number,

IxN-]{w(a.B,Y;X)XB-a+]Ex

0 -1 1
I=
w
e
>
i
e
WA\

(7.18)

< LN'])(_‘ +.ElN Z L(m+]-yﬂ_‘p N {I‘i' m_I_'I) ) e-mx

T (-v) n=0 (m+1) 1 (m+1) VI r(T-as(ms1)s)| x™F

for x > [|8]+]a- N{J 1+E

(1.6)"

s, where v(a,B,y3x) is defined by

Proof. Consider the integral representation of y(a,B8,v3X)

as aiven by (1.9).

One has
(7.19) (1 -Y)Y = 1 + — g Llnty) oyn
r(-y) n=l n!
where
e-x(1+y)
(7.20) Y 5-—Eﬂ——*—g < 1 ,
X (1+y)

for each y > 0,

Since the series on the right of (7.19) converges
uniformly for |Y| < 1-¢ (e being such that 0 < ¢ < 1),

from (1.9) one gets integrating term by term

a-]-nse-nxy=

p(asBry3X) = - — ) fin-y) e f dt(1+y)
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7 F(n-v) nTatng

T(a-nBg,nx)

where the representation (7.16) has been used.
2]

Puttinga m = n-1, Eq. ) can be expressed as

V(asBsysXx) = - ] (3BT ; T(m+i-v) ,~MB ~mX .
I(=v) m=0 (m+1)!
(7.22)
{[(m+1)xj'&+(m+1)Be(m+1)xr(a_(m+])8,(m+])X)}-

Using now (7.22) and recalling (7.17), we can write

N=-2 1
w(&:BgY;X)XB-u+]ex_ Z AS(X) “—g-" -
X
s=0
= - 1 E’ﬂ(m+]'ml x-m3+1e-x
'(-y) m=0 (m+1)!
(7.23)
{[(m+])%]-a+(m+])ﬁe(m+])xr(u*(m+l)6=(m+l)x -
- NEZ (_])S F(S-u+ﬂ])g+]L _
s =0 F(T-u+(m+])g)[(m+])x]

Multiplying both sides of (7.23) by xN_], with

the help of Lemma 7.4 one obtains the inequality (see
Remark 7.6):



TN

N-1 -q- - ——
xJ {w(a,B,Y;X)XB oL ) Ag (X) /

g (N-1) ; ir(m+]—y1‘ %ﬂmse=mx

IT(-v)]| m=0 (m+1)!

(7.24)

T(N-a+(m+1)8) XN

g — M

F(1-a+(m+1)B) [(m+1)x-\a-(m+1)3-m|]N

e

for x > || + |a-N]|.
Now we notice that

(7.25) - x@_ — < 1 14 (m+]llﬁj+fm—N‘
Em+])x-|u-(m+1)B-N[JN (m+1)" (m+1) (x-|8])-la-N|

Furthermore, for any ¢ > 0 there esists a value of

X, Say X , such that for any m:
- -

(7.26) (m+1)/B[+]a=N

(m+1)(x=|8|)-]a-N]

< E

for each x > x

£
In fact, the validity of (7.26) is assured for any

wWLwhenever x > X , where
£

(7.27) X = [JB[ +‘m-Nf] Lte :

£

Finally, Leama (7.5) follows from (7.24)after taking
into account (7.25) and (7.26).



Remark 7.6. The use of Lemma 7.4 in deriving

the result (7.24) implies _nhe evaluation of the Laplace

transform

( - -
| dt e ltt \

/o

where A =(m+1)x=-|a=-(m+1)8-N|, which exists if and only
if (m+1)x > |a=-(m+1)8=-N| for any m.
Since {fa-(m+1)8=N| < (m+1)|8] + |a=-N|,

we have

(m+1)x=]|a=-(m+1)8=-N| 2(m+1)(x=]8]|)=]|a=-N]|.

Thus we need to require that (m+1)(x-|8|)=]a=N| > O

for any m, the latter being satisfied when x > [B[+[a-N].

Lemma 7.6. "The series

B ]

ITIB -MX

(7.28) Z r(m+l-vy)r(s- u+§m+1)s+12

m=0

(m+1)! (m+1) F(]-u+(m+1)8)

which defines the function (-1)S+1r(-y)As(x), converges

absolutely and uniformly for any x greater than a certain

X satisfying the inequality e " < xB".

Proof. Since

(7.29) N F§5+1‘ﬂtlm+1152 N O(m-l)

m+1)5* r(1-akim1)e)

as Mm~> +=» , from a certain value of’n& say n%, onwards it

turns out that

(7.30) ] F§S+1-a+§m+]l8)___ S

(m+1)5+] T(T=-a+(m+1)8)




Hence
(s+1-a+(m+1)B)| X HBe-mx .
(m+1)!(m+] S+u(‘(1 (m+1¥?ﬂ
(7.31)
) [r§m+1-y e~mxx—ms ,
(m+1) !
form:>Mm .

0

From (7.31) one deduces that the series (7.28) is

majorised by

I (m+1-vy) -mX _-mB

— e X
m (m+1) !

~71 8

(7.32)

m

Recall now that (see (3.1))

% “mX -Mmg - =X vy -
(7.33) §  Limtl-vje X = r(-v)| (1 - &) -1] x"e
m=0 (m+1) ! - x " -

being the series on the left absolutely and uniformly
convergent for any Xx>X. where X is a certain value verify-
ing the inequality e_xﬁxg. The assertion arises therefore
from the fact that (7.32) is the mq—th remainder of the

series appearing in (7.33).

Lemma 7.7. "The series

o A ———



(7.34) 3 F(m+1-v) T (N=a+(m+] -MB -mxX

N X e ’
m=o (m+1)!(m+1)" |[T(1-a+(m+1)

o
To
|

o
o

which appears on the right .r (7.18), converges uniformly

for any x greater than a certain x verifying the inequality

- X
e £LXx . Furthermore, one has

N-1 B=at+l X NEZ 1
(7.35) X {Vv(asBsys X)X e -S:OAS(X) —— + const,

as X > + o As(x) being defined by (7.17) and

(7.36)  const < |y|(N-1)(1+¢)" | Lil=atB)

where N > 2 and ¢ 1s any arbitrary positive number".

Proof. The first part of the lemma follows directly
from Lemma (7.28).

As a consequence, the results (7.35) and (7.36)

arise immediately from (7.18).
In virtue of the series of lemmas from (7.3) to

(7.7), the basic Theorem 7.2 is thus completely proved.

8. SOME SPECIAL CASES.

a) "Asymptotic expansion of the incomplete r-function".

The expression (7.6) can be written as

A (X)=(-1)S+]{('Y) Liscavprl)
S
F(-u+ﬂ+1)

(8.1)



