Proof. By putting $\mathrm{n}=1$ in (5.5), we obtain

$$
\int_{x}^{\infty} d t e^{-t} \psi(\alpha, \beta, \gamma ; t)=e^{-x} \psi(\alpha, \beta, \gamma ; x)-\psi(\alpha+\beta, \beta, \gamma ; x)+
$$

$$
\begin{equation*}
+\psi(\alpha+\beta, \beta, \gamma+1 ; x)-\Gamma(\alpha, x) . \tag{5.11}
\end{equation*}
$$

In virtue of Proposition 1.1 the relation (5.11) is valid also when $x=0$. Using then (5.4) the assertion is proved.
6. SOME FUNCTIONS AND RELATIONS CONNECTED WITH THE $\psi$-FUNCTION.
a) "Case" $\gamma=0$.

Obviously one has $\psi(\alpha, \beta, 0 ; x)=0$.
b) "Case" $\gamma=1$.

For $\gamma=1$ the function (1.6) specializes to the incomplete $\Gamma$-function. In fact, we have
(6.1) $\psi(\alpha, \beta, 1 ; x)=\int_{x}^{\infty} d t t^{\alpha-\beta-1} e^{-t}=\Gamma(\alpha-\beta, x)$.
c) "Case" $\gamma=n$ (positive integer).

As we have already noted (see Sec.3), the function (1.6) can be expressed as a finite sum of incomplete $\Gamma$-functions.
d) "Case" $\gamma=-1, \alpha=n+1, \beta=0$.

For $\gamma=-1$ the function (1.6) becomes
(6.2)

$$
\psi(\alpha, \beta,-1 ; x)=-\int_{x}^{\infty} d t \frac{t^{\alpha-1}}{e^{t} t^{\beta}-1} .
$$

Putting in (6.2) $\alpha=n+1$ ( $n$ positive integer) and $\beta=0$ we get

$$
\begin{equation*}
\psi(n+1,0,-1 ; x)=-D(n, x) \tag{6.3}
\end{equation*}
$$

where
(6.4) $D(n, x)=\int_{x}^{\infty} d t \frac{t^{n}}{e^{t}-1}$
is a function introduced by Debye in his theory of specific heat of solids [18]. From now on, we shall call (6.4) the incomplete Debye function.

Remark 6.1. For $x=0$ and $n \geq 1$ the function (6.3) becomes
(6.5) $\psi(n+1,0,-1 ; 0)=-D(n, 0)=-\int_{0}^{\infty} d t \frac{t^{n}}{e^{t}-1}=-n!\zeta(n+1)$,
where $\zeta(z)$ is the Riemann zeta function.
More generaliy, from (6.2) we deduce that
(6.6) $\psi(\alpha, 0,-1 ; 0)=-\int_{0}^{\infty} d t \frac{t^{\alpha-1}}{e^{t}-1}=-\Gamma(\alpha) \zeta(\alpha)$,
for $\alpha>1$.

Remark 6.2. We shall call generalized incomplete Debye function, the integral
(6.7)

$$
\int_{x}^{\infty} d t \frac{t^{\alpha-1}}{e^{t}-1}
$$

which appears on the right-hand side of (6.2). Using the symbol $D(\alpha-1, x)$ to denote (6.7), we have

$$
\begin{equation*}
\psi(\alpha, 0,-1 ; x)=-D(\alpha, x) \tag{6.8}
\end{equation*}
$$

from (6.2).

Remark (6.3). Let us point out that one is able to evaluate the sum of the series on the right of (3.3), for any $\gamma=-n$, which is also an arbitrary negative integer, in terms of a combination of incomplete Debye functions and other known functions. In the special case $\gamma=-1$, taking into account (6.8) we obtain

$$
\begin{equation*}
D(\alpha-1, x)=\sum_{n=1}^{\infty} \frac{\Gamma(\alpha, n x)}{n^{\alpha}} \tag{6.9}
\end{equation*}
$$

for each $x>0$, from (3.3).
Furthermore, in view of (6.6) and (6.8), from (3.3) we find the known expansion for the Riemann zeta function:
(6.10) $\quad \zeta(\alpha) \equiv-\frac{1}{\Gamma(\alpha)} \psi(\alpha, 0,-1 ; 0)=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$,
for $\alpha>1$.
To conclude the case d), we notice that (5.5), for
$\gamma=-1, \beta=0, x=0$ and $\alpha=n+1$ ( $n$ positive integer) provides an integral representation for the finite sum $\sum_{j=1}^{m} \frac{1}{j^{n+1}}$, in terms of the incomplete Debye function (6.4), namely

$$
\sum_{j=1}^{m} \frac{1}{j^{n+1}}=\frac{m}{n!} \int_{0}^{\infty} d t e^{-m t} D(n, t)
$$

e) "Case" $\gamma=-\frac{1}{2}, \quad \beta=0$.

For $\beta=0$ and $\gamma=-\frac{1}{2}$, it also exists the integral on the right of (1.6) for any $\alpha>+\frac{1}{2}$ when $x=0$. Furthermore using the series expansion (3.1) one has

$$
\begin{equation*}
\psi\left(\alpha, 0,-\frac{1}{2} ; 0\right)=-\Gamma(\alpha) \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{n^{\alpha}} . \tag{6.11}
\end{equation*}
$$

If we now define the function

$$
\begin{equation*}
Z(\alpha)=-\frac{1}{\Gamma(\alpha)} \psi\left(\alpha, 0,-\frac{1}{2} ; 0\right), \tag{6.12}
\end{equation*}
$$

the relation (6.11) gives

$$
Z(\alpha)=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{n^{\alpha}},
$$

for $\alpha>\frac{1}{2}$.
f) "Case" $\beta=0$ and $\alpha>\max (0,-\gamma)(\gamma \neq 0,1,2, \ldots)$. Both the series on the right of (6.10) and (6.13)
can be considered as special cases of the more general
series:
(6.14)

$$
\sum_{n=1}^{\infty} \frac{\Gamma(n-\gamma)}{\Gamma(-\gamma) n!} \quad \frac{1}{n^{\alpha}}
$$

which converges for any $\alpha>\max (0,-\gamma)$. From (3.3), we deduce that the sum of this series is given by the function

$$
-\frac{1}{\Gamma(\alpha)} \psi(\alpha, 0, \gamma ; 0)
$$

In order to show that the series (6.14) is convergent, let us determine the asymptotic expansion of $\frac{\Gamma(n-\gamma)}{n!}$ for large $n$. In doing so, it is enough to recall that $[19]$
(6.15) $\Gamma(a z+b) \sim \sqrt{2 \pi} e^{-a z}(a z)^{a z+b-\frac{1}{2}}$,
for $z \rightarrow \infty,|\arg z|<\pi$ and $a>0$.
Using (6.15), we thus have

$$
\begin{equation*}
\frac{\Gamma(n-\gamma)}{n!} \sim O\left(n^{-\gamma-1}\right) \tag{6.16}
\end{equation*}
$$

for large values of $n$.
Therefore, the convergence of the series (6.14) is assured if $\alpha>-\gamma$.
g) "A functional relation for the polygamma functions".

The properties of the function $\psi(\alpha, \beta, \gamma ; x)$ defined according to (1.6) can be usefully exploited in order to re-derive a well-known functional relation for the polygamma functions:

$$
\begin{equation*}
\psi^{(n)}(x)=\frac{d^{n+1}}{d x^{n+1}} \ln \quad \Gamma(x) \tag{6.17}
\end{equation*}
$$

where $\mathrm{n}=1,2,3, \ldots$ and $\mathrm{x} \neq 0,-1,-2, \ldots$.
More specifically, we will show that
PROPOSITION 6.5. "The following functional relation holds:
(6.18) $\psi^{(n)}(m+1)=(-1)^{n} n!\left\{-\zeta(n+1)+\sum_{j=1}^{m} \frac{1}{j^{n+1}}\right\}$,
where $m$ is a non-negative integer and $\zeta(n+1)$ is the zeta Riemann function".

In doing so, let us start off with the integral representation [20]
(6.19) $\psi^{(n)}(m+1)=(-1)^{n+1} \int_{0}^{\infty} d t \frac{t^{n} e^{-(m+1) t}}{1-e^{-t}}$.

Since
(6.20) $\frac{d}{d t} \psi(\alpha, 0,-1 ; t)=\frac{t^{\alpha-1} e^{-t}}{1-e^{-t}}$,
from (6.19) we have
$(6.21) \quad \psi^{(n)}(m+1)=(-1)^{n+1} \int_{0}^{\infty} d t e^{-m t} \frac{d}{d t} \psi(n+1,0,-1 ; t)$,
for $\alpha=n+1$.
Integrating by parts, Eq. (6.21) yields
(6.22) $\psi^{(n)}(m+1)=\left.(-1)^{n+1}\right|_{-} ^{-}-\psi(n+1,0,-1 ; 0)+m \int_{0}^{\infty} d t e^{-m t} \psi(n+1,0,-1 ; t)^{-}$

In virtue of corollary 5.4 and theorem 5.5, the integral on the right of (6.22) reads

$$
\begin{align*}
& m \int_{0}^{\infty} d t e^{-m t} \psi(n+i, 0,-1 ; t)=  \tag{6.23}\\
& =\psi(n+1,0,-1 ; 0)-\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}[\psi(n+1,0, k-1 ; 0)-\psi(n+1,0, k ; 0)] .
\end{align*}
$$

If we set apart the term of (6.23) corresponding to $k=0$, having in mind that $\psi(n-1,0,0 ; 0)=0$ and resorting to the recurrence relation (4.1) for $\alpha=n$ and $\gamma=k$, Eq. (6.23) reads
(6.24) $m \int_{0}^{\infty} d t e^{-m t} \psi(n+1,0,-1 ; t)=\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} \frac{n}{k} \psi(n, 0, k ; 0)$.

Since (see (3.4))
(6.25) $\quad \psi(n, 0, k ; 0)=(n-1)!\sum_{j=1}^{k}(-1)^{j+1}\binom{k}{j} \frac{1}{j^{n}}$,

Eq. (6.24) becomes

$$
\begin{align*}
& m \int_{0}^{\infty} d t e^{-m t} \psi(n+1,0,-1 ; t)=  \tag{6.26}\\
& =n!\sum_{k=1}^{m} \frac{(-1)^{k}}{k}\binom{m}{k} \sum_{j=1}^{k}(-1)^{j+1}\binom{k}{j} \frac{1}{j^{n}} .
\end{align*}
$$

By interchanging the summations in (6.26), with the help of the identity

$$
\frac{1}{k}\binom{k}{j}=\frac{1}{j}\binom{k-1}{j-1}
$$

we are led to the expression
(6.27) $\mathrm{m} \int_{0}^{\infty} \mathrm{dt} \mathrm{e}^{-m t} \psi(n+1,0,-1 ; t)=$

$$
=-n!\sum_{j=1}^{m} \frac{(-1)^{j+1}}{j^{n+1}} \sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k-1}{j-1}
$$

At this point, we need to show two lemmas, namely:
Lemma 6.5
"Suppose that $j$ and $m$ are positive integers such that $1 \leqslant \mathrm{j}: \leq \mathrm{m}-1$. Then one has

$$
\begin{equation*}
\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k}{j}=0 . " \tag{6.28}
\end{equation*}
$$

Proof. Notice that
(6.29) $\binom{m}{k}\binom{k}{j}=\binom{m}{j}\binom{m-j}{k-j}$.

As a consequence, we can write

$$
\begin{equation*}
\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k}{j}=\binom{m}{j} \sum_{k=j}^{m}(-1)^{k+1}\binom{m-j}{k-j} \tag{6.30}
\end{equation*}
$$

from which, by putting $h=k-j$ and taking into account the hypothesis $m-j \geq 1$, one finally gets

$$
\begin{equation*}
\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k}{j}=(-1)^{j+1}\binom{m}{j} \sum_{h=0}^{m=j}(-1)^{h}\binom{m-j}{h}=0 . \tag{6.31}
\end{equation*}
$$

Lemma 6.6
"Let $j$ and $m$ be any pair of positive integers such that $1 \leq j \leq m$. Then one has

$$
\begin{equation*}
\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k-1}{j-1}=(-1)^{j+1^{\prime \prime}} \tag{6.32}
\end{equation*}
$$

Proof. By putting

$$
\begin{equation*}
f(j)=\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k-1}{j-1}, \tag{6.33}
\end{equation*}
$$

for convenience, we can write
(6.34) $f(j)+f(j+1)=(-1)^{j+1}\binom{m}{j}+\sum_{k=j+1}^{m}(-1)^{k+1}\binom{m}{k}\left[\begin{array}{l}-k-1 \\ j-1\end{array}\right)+\binom{k-1}{j}$

$$
=\sum_{k=j}^{m}(-1)^{k+1}\binom{m}{k}\binom{k}{j}
$$

where we have used the identity
(6.35) $\binom{k-1}{j-1}+\binom{k-1}{j}=\binom{k}{j}$.

On the basis of Lemma 6.5 from Eq. (6.34) we find

$$
\begin{equation*}
f(j)+f(j+1)=0, \tag{6.36}
\end{equation*}
$$

for $1 \leq j \leq m-1$.

Since $f(1)=1$, Eq. (6.36) tells us that

$$
\begin{equation*}
f(j)=(-1)^{j+7} \tag{6.37}
\end{equation*}
$$

where $j=1,2, \ldots, m-1$.
We complete the proof observing that the relation (6.37) also holds for $j=m$. In fact, putting $j=m-1$ we have from (6.36) and (6.37):

$$
f(m)=-f(m-1)=(-1)^{m+1}
$$

Now let us go back to Eq. (6.28). Using the result (6.32), Eq. (6.28) becomes
(6.38) $m \int_{j}^{\infty} d t e^{-m t} \psi(n+1,0,-1 ; t)=-n!\sum_{j=1}^{m} \frac{1}{j^{n+1}}$

Then, making the subştitution (6.38) into Eq. (6.23), we obtain
(6.39) $\left.\psi^{(n)}(m+1)=\left.(-1)^{n}\right|_{-} ^{-} \psi(n+1,0,-1 ; 0)+n!\sum_{j=1}^{m} \frac{1}{j^{n+1}}\right]$.

Recalling that (see (6.10)) :

$$
\zeta(n+1)=-\frac{1}{n!} \psi(n+1,0,-1 ; 0)
$$

Eq. (6.39) finally produces the relation (6.18).

## Remark 6.7

Using the identity

$$
\binom{k}{j}=\frac{k}{j}\binom{k-1}{j-1}
$$

Eq. (6.32) reads
(6.40) $\sum_{k=j}^{m} \frac{(-1)^{k+1}}{k}\binom{m}{k}\binom{k}{j}={\frac{(-1)^{j+1}}{j}}^{j+}$

By putting $h=k-j$ into (6.40), with the help of (6.29) one has
(6.41)

$$
(-1)^{j+1}\binom{m}{j} \sum_{h=0}^{m-j}(-1)^{h} \frac{1}{h+j}\binom{m-j}{h}={\frac{(-1)^{j}}{j}}^{j+1}
$$

By putting in (6.41) $n=m-j$, we are led to the formula

which may be considered as a generalization of the well-known formula

$$
\sum_{h=0}^{n} \frac{(-1)^{h}}{h+1}\binom{n}{h}=\frac{1}{n+1}
$$

deducible from (6.42) when $j=1$.

