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)" INTRODUCTION

It is not often that we can formulate evolution equati~

pertinent to nonlinear phenomena admitting exact special

solutions.

Among these equations the following are, for instance,

of great interest both in physical application9 and from a

matheroatical point of view (see review articles [l] , [2J and

[3J ):

i) The Korteweg-de Vries equation [4, SJ

(1.1 ) + U U + au
x xxx - O

and its modified forro [61

(l. 2)
2u + U U + au = O,t x xxx

where u=u (x, t)1 a is the dispers i ve parameter [7) and

subscripts indicate partial derivatives.

ii) The so-called sine-Gordon equa t ion [8, IJ

(l. 3) u - a SlnaU,tx

and Liouville' s equation [9] :

(l. 4) u tx
aU- a e ,

where ~ and a are constants.

AlI the aforesaid nonlinear differential equations afford

exact self-similar solutions, Le. solutions of the form u·u(~),

where ~ = x + V t and v is a (real) constant.

When suitable asymptotic conditions on u(~) are fulfilled,

u(~) is usually called a solitary wave solution [IJ and plays

a centraI role in many branches of science, as for example
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solid state and plasma physics, and biologica l systems ([1,3J

and [lO] ).
Besides the abovementio~ed equations, ~n recent years

other interesting, but analy~jcally more intractable, evolution

equations referred to nonlin· -·r phellVmena have been intro ­

duced [3], as the modified sj~è-Gordon equation

(l. 5) u - a sinau + bu + c,
tx

which is pertinent to the so-called massive Schwinger model

(see [llJ and references quoted therein).

In most cases, where(1.5) is a particular example, ~t

self-similar solutions for nonlinear evolution equations can­

not be obtained in terms of known functions. However such

solutions may be given sometimes provided that of course new

functions are defined. But this is a ticklish question, since

introducing new functions·.is generally satisfying only if

their use goes beyond the specific context we are concerned

with, that is at present the problem of finding special so­

lutions of certain nonlinear differential equations.

Adopting this philosophy, in this paper we have intro­

duced the new function

(l. 6) 1/l(a,Il,Y;X) -

..
a -l

dt t

x

l - (l -
y

) ,

where a, Il and y are free parameters, which arises ~n a nannal

way when looking for an exact self-similar solution of the non­

linear wave equation

(l. 7) u = a
tx

-u Il-l
e + bu ,

a, band Il being constants, It should be remarked that (1.7)
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may be regarded as an extended form of Licuville's equation

(l. 4) •

Notice that from (l. 6) one has al so
('" - -l.;,xz

(l. 8) 1/J(a,e,y;x)
Cl dz a-l'l l "_

e
}- x z t- ~

()Cz) e
,

l - -

and

(l. 9) 1jJ(a,e,y;x) Cl a-l
= x dy(l+y) {

I
. J o

-
l - 1-

-

-x(l+y) - y
e }.

T h e s e formulae will prove helpful later.

One of the main characteristics of the function ll.6),

whicn has 5trongly affected the present investigation, is

that of covering a series of both known and new special

functions and certain functional relations connected with

them. As for instance, when y~l (1.6) reduces to the in ­

complete Gamma function [12] and for y = -l, e = o (1.6)

becomes the so-caIIed Debye function (s6e"o§6). In other words,

studying the properties of the function (1.6) means provid­

ing insight into the properties of a whole famiIy of (old

and new) special functions of physical and matheaatical

interest. SpecificaIIy, theaim of this worx is to deri~e

some of most significant relations concerning the function
•

(l. 6), laying stress on what these become when the parUle.ters

a, e and ~ are suitably specialized.

For simplicity's sake, here we have assumed that a,e,y

and x are real, being understood that theo latter is non­

negative. Furthermore, 'Ne have res.tricted ourselves to con­

sider only real values of 1jJ(a,e,y;x). This implies that

e-t < te for any t verifying x S t < + ~. To this end, we



- 5 -

show below that the integraI (1.6) can also be extended to

the interval (O, +~) open on the left. We have the following

PROPOSITION 1.I.SuEPose that -e < e <.0

Then the integraI

and a > - IBI.

- -
a-l -t y

(1.10) dt l -(l e
)t -

te
,

o - -
exists for any (real) value of the oarameter 1.:.•

Proof. As we have previously said, here we are interested

only in dealing with real values of the function (1.6). In

order that this occurS for any y, we should require that

(1.11)
- e -t

t e < 1.

Since the function -e -t
t e takes its maX1mum value at

t = - e > O, the limitation (1.11) implies that

(1.12) - e < e < O.

Furthermore
J

since

-

+
as t + O , the assertion is proved.

PROPOSITION 1.2. When e = O, the integraI (1.10) exists for

y > O, a > O and for y < O, a > Iy I .

Proof. The first part of the lemma is obvious. The second

part arises from

+
as t + O .
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The extension of the funetion (1.6) and its basiri re­

lations to eomplex variables will be given elsewhere.

Let us elose this seetiùn with a brief remark. As a

wide class of known funetions can be interpreted in the

l ight of group theory (see, ~::>r example, [13J), so one might

investigate whether the same happens for the function (1.6).

We shall be concerned with this ehallenging prospeet in the

near future.

2. SELF-SIMILAR SOLUTIONS FOR THE NONLINEAR WAVE EQUATION
-u a-l

u = ae + bu •
tX

Consider the nonlinear partial differential equation

(1.7) in l + l spaee-time coordinate system, where u = u(x,t)

and a, band a f o are real parameters.

We shall look for self-similar solutions of (1.7). In

doing so, let us put u = u(C) in (1.7) where C = x + vt.

Then (1.7) transforms into the ordinary differential equation

(reduced form o~ (1.2)):

(2.1) t Z
~ V Uc - -u

-ae +
b-a

e being an integration constant.

By choosing e = O and

(2.2)
l

2a
v = k > O,

(2.3)

(2.1) yields

b
aa = l,


