1.

INTRODUCTION

It is not often that we can formulate evolution equations
pertinent to nonlinear phenomena admitting exact special

solutions.
Among these equations the following are, for instance,
of great interest both in physical applications and from a

mathematical point of view (see review articles [1] , [2] and
(3] :

i) The Korteweg-de Vries equation [4,5]

(1.1) ut + ux u + Buxxx =0

and its modified form [6]
(1.2) u, + uu + Bu = 0,

where u=u(x,t), 8 is the dispersive parameter [7] and
subscripts indicate partial derivatives.

ii) The so-called sine-Gordon equation [8,1]

(1.3) u a singu,

tXx

and Liouville's equation [9] :

cu
ae ,

i

(1.4) u .
where @ and ¢ are constants.

All the aforesaid nonlinear differential equations afford
exact self-similar solutions, i.e. solutions of the form u=u(g),
where £ = x + v t and v is a (real) constant.

When suitable asymptotic conditions on u{f) are fulfilled,

u(g) is usually called a solitary wave solution [1] and plays

a central role in many branches of science, as for example



solid state and plasma physics, and biologiczl systems ([1,3]
and [10] ).

Besides the abovementior=d equations, in recent years
other interesting, but analytically more intractable, evolution
equations referred to nonlin -r phenvmena have been intro -

duced [5], as the modified sise-Gordon equation

(1.5) u, = a sinou + bu + c,
which is pertinent to the so-called massive Schwinger model
(see [11] and references quoted therein).

In most cases, where(l.5) is a particular example, exact
self-similar solutions for nonlinear evolution equations can-
not be obtained in terms of known functions. However such
solutions may be given sometimes provided that of course new
functions are defined. But this is a ticklish question, since
introducing new functions:is generally satisfying only if
their use goes beyond the specific context we are concerned
with, that is at present the problem of finding special so-
lutions of certain nonlinear differential equations.

Adopting this philosophy, in this paper we have intro-
duced the new function

(1.6)  w(a,B,y3;x) = | dt t= ~ |1 - (@1 -=—=—) |,

X

where a, B and y are free parameters, which arises in a natural
way when looking for an exact self-similar solution of the non-
linear wave equation

-u B-1
(1.7) u = ae + bu ,

a, b and 8 being constants, It should be remarked that (1.7)



may be regarded as an extended form of Licuville's equation

(1.4).
Notice that from (1.6) one has also
(e . _
. v-1 l X2 ¥
(1.8)  w(a,B,y;x) = x |dz z= “{l- 1 - B
1 ' (xz)" _
and

@0

[}

- =X(1+y) =¥y
(1.9)  v(a,8,v5%) 9———-—-——, 3.

xa{ dy(1+y)* 1 1 -' 1- & -
- x (l+y)" -

P

T hes e formulae will prove helpful later.

One of the main characteristics of the function (1.6),
whicn has strongly affected the present investigation, is
that of covering a series of both known and new special
functions and certain functional relations connected with
them. As for instance, when y=1 (l1.6) reduces to the in -
complete Gamma function [12] and for vy = -1, B = 0 (1.6)
becomes the so-called Debye function (see-§6). In other words,
studying the properties of the function (1.6) means provid-

ing insight into the properties of a whole family of (old

and new) special functions of physical and mathematical
interest. Specifically, the aim of this work is to derive
some of most significant relations concerning the function
(1.6];‘laying stress on what these become when the parameters
o, B and ¥y are suitably specialized.

For simplicity's sake, here we have assumed that a,8,Y
and x are real, being understood that the: latter is non-
negative. Furthermore, we have restricted ourselves to con-
sider only real values of y(o,B8,y;x). This implies that

e t . tB for any t verifying x < t < + », To this end, we
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show below that the integral (l1.6) can also be extended to
the interval (0, +:») open on the left. We have the following

PROPOSITION 1.1, Suppose that =-e < g <.0 and a > - |8

Then the integral

(=]

- -

-t Y
-1 €
Tlr-a- = |,
t
O - -

(1.10) dt t

exists for any (real) value of the parameter y.

Proof. As we have previously said, here we are interested
only in dealing with real values of the function (1.6). In

order that this occurg§ for any vy, we should require that

(1.11) 8 et <1,

Since the function t e © takes its maximum value at
t =-8 >0, the limitation (1.11) implies that
[1.12) - e < g < 0.

Furthermorg’since

-Y_

t%1 - 1 - tIBle't) n 0(t“+16|).

+
as t - 0, the assertion is proved.

PROPOSITION 1.2. When B8 = O, the integral (1.10) exists for

y > O,a > 0 and fory < O,a > |y].

Proof. The first part of the lemma is obvious. The second

part arises from

£ (1 - e't)'IY] n tG_IYll:l +0(t) |

+
as t - 0 .



The extension of the function (1.6) and its basid re-
lations to complex variables will be given elsewhere.

Let us close this secticn with a brief remark. As a
wide class of known functions can be interpreted in the
light of group theory (see, ‘or example, [13]), so one might
investigate whether the same happens for the function (1.6).
We shall be concerned with this challenging prospect in the

near future.

2. SELF-SIMILAR SOLUTIONS FOR THE NONLINEAR WAVE EQUATION

-u -1
u = ae + bu8 .
tX

Consider the nonlinear partial differential equation
(1.7) in 1 + 1 space-time coordinate system, where u = u(x,t)
and a, b and g # O are real parameters.

We shall look for self-similar solutions of (1.7). In

doing so, let us put u = u(g) in (1.7) where £ = X + vt.
Then (1.7) transforms into the ordinary differential equation

(reduced form of (1.7)):

(2.1) v u2 = -ae vy

¢ being an integration constant.

By choosing ¢ = 0 and

(2.2) 5—3—— v =k> o,
b _
(2.3) — = 1,

(2.1) yields



(u -2
_E e't
(2.4) rx(g - € ) == |dt t 2 (1 - —) ,
o R
t
u
0

where u, = u(go), A =k 2 an go is a constant. (In the
following, we shall select the positive sign in front of
the integral (2.4?.

First let us deal with the case g # 2. Using a simple
trick,[2.4) reads

(S]]}

1-(1- L. ) +const.
tB

- -

(2.5) AE = E%E u 2 +

Taking account of (1.6), (2.5) can be written as

2 Q_B.. Z_B
(2.6) A = 75 U 2 + y( = s By - 1, u) + const.

At this stage it is instructive to treat some special

cases of (1.7), namely:

a) Case B = 2.

Equations (1.7) and (2.1) become respectively:

(2.7) ae ® + bu ,

c
il

tXx

and

(2.8) vuz = -ae + 1 bu + c.

[ S1ER]

From (2.8) we obtain for c = O:
u -3

-1 e-t
(2.9) rA(g - Eo) = dt t (1 - -E- ) ’
Iy t
Q



where b = 2a and £ 1is a constant.
(o]

Following the same procedure previously used, we are

led to the expression

(2.10) AE = &n u +| dt t_l 1 (1 - 93— ) + const.

L -

Equation (2.10) reads also

(2.11) Af = snu+ ¥(0,2, ; u) + const,

[ ST

where v(0,2, -1; u) 1is defined by (1.6).

Remark 2.1. An explicit solution of the form (2.11)

holds also for the equation

-

(2.12) W, =Pe Yo qw+rT,

p, q and r being constants.
In fact, by carrying out the substitut%on w=u -
(2.12) transforms into (2.7), where a = p ed and b = q.

b) Case B = 1.

Equations (1.7) and (2.1) read respecitvely

-u
(2.13) utx = a e + b
and
(2.14) v ué = -ae " + bu + c.

The change of variable u = w - transforms (2.14) 1into

o'l0

the equation

c
(2.15) 1y wé = -aebe " + bw.



Choosing then ¢ = b 1n g , from (2.15: one has
(2.16) h wé = W - e ,

where h = _?B- .

Equation (2.16) provides

=
i
t
DNl=

w -
(2.17)  w(e - g )= | dtt (1-5) ,

-1
where y = h ?

From (2.17) one gets

8

- . -
1 1
(2.18) A = 2w? + |dt t * |1 - (1 - E?_ ) + const,

where w = u + 1In — .
Finally, taking account of (1.6), (2.18) can be written

as

I

. _
2w? + p(i, 1, -1; w) + const.

(2.19) AE

c) Case b = 0.

In this case (1.7) specializes to Liouville's equation

(1.4), whilst (2.1) becomes

(2.20) k ut = -e =+ 1,

where k is given by (2.2) and ¢ has been chosen equal to §.

Equation (2.20) yields
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(2.21) A(E-§) = dt (1-¢ ) .

The integral on the right of (Z.21) can be expressed in terms of

the function (1.6) as follows

u
(2.22) dt (1 - e

(=

t.—%
) 2 = wr{(1,0,-55u) - u - (1,0,-33u ) .

Using (2.22), from (2.21) we obtain

(2.23) )\él =u+ Y (1,0,-33u) + const.

The function Y (1,0 -%;u) can be explicitly determined in terms

of elementary functions. In fact, since

(S

u 1 1 -u
(2.24) f dt(1-e ©)2 = _2 fn[1_(1_e"“)5] —ut2 ‘Enll-(l-e °) J tu,

u
0

from (2.22) and (2.24) we obtain

: i
(2.25) ¥ (1,0,-35u) = ——ZEn[l-(I-e )2_] -2u + const,
where the censtant on the right is given by

(2.26) 2 lim {t + ﬂn[l—(l—e—t)%)_} = -2 fn 2.

t=>+ oo
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Now let us go back to (2.23). In view of (2.25) we have

(2.27) Ae)\(é_é") = — e
—uyd 72 ’
[l—-(l-e uy? ]
where
..uo
(2.28) A = = .

M=)

[ 1-.(1..e—u°) ] :

Finally, by means of simple calculatinns, (2.27) allows us to

obtain the following expression of u in terms of é :

f [1+2Ae)\(t’“£°)]2
@ T N B [ G B ]

3. SERIES REPRESENTATION OF Y (o, f5,)3x) IN TERMS OF INCOMPLETE CAMMA
FUNCTIONS.

Let us consider the binomial expansion

o0

-ty 1 Z I (- ) ¢t
(3.1) (- %=5) = 1+ ,
) ¢ (-¥) n=t n tn[;

where the series on the right is uniformly convergent for t 2~ x,

-X
x being any fixed number such that e < X .

We can thus write 00
M (o _afp-1 -
(3.2) ¥ (& ,P:X;X)=— P—tm-zz;l —(ET‘r—lfxdt to‘ nP 1e nt.
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Therefore. the use of the following integral representa-

tion for the incomplete T-function [14]

Y v-l -ut
WT(v,ux) = fdt t° e MU,

X

for x > 0 and Reu>0, leads us to the expression

1

r(-y) n

I(n-y) np-e

1 n!

(3.3) y(a,B,y;x) =- I'(a=ng,nx).

I ™~1 8

Obviously, in the special case y = m, where m is a
positive integer, the expression (3.3) reduces to a finite

sum of incomplete TI-functions, specifically:

m

m
(3.4) y(a,,m3x) = - J (-1
n=1 n

)nns-ar(a—ns,nx).

4. A RECURRENCE RELATION.

The following recurrence relation holds:
x* 1-(1- —E*) +
X

(4.1) A - X pla,e,v3x) = -

|+

* E[:w(a+1,B,Y;X) - w(a+l,8,y-l;x)-Bw(a,B,Y_l;x)] ,
for o # 0.
In fact, from (1.6) we can write
(e -t e YL
0‘.—1 e e
‘P(G,B,Y;X) = Jdt t [1' (1 - T )(]_ - ——B-.- ) .
X t t -

which yields
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© 'Y—-l

f -g-1 -t ~t
(4.2) J at t*7 7T L - EE— ) =y (a,8,v5x) - y(a,B,y-15X%).
X

t

Furthermore, integrating by parts we obtain from (1.6):

l « e-t Y
(4.3) p(a,B,y;Xx) = - — X [} - (1 -= ) +
o XB
Y P _ -t y-1
T 278 e oegye™t (1 - & ) ,
B
o bl t
for a# O.

Now using (4.2), the integral on the right hand side

of (4.3) can be expressed as

© -t Y -1

[ - - -
(4.4) | de 28 (teg) et - & ) -
J & t

B

= y(a+l,B,y;x) -¢(a+l,B,y-1;x)+B8|v(a,B,y;X)-¥(a,B,y-1;X)

Finally, inserting (4.4) into (4.3) we get the recurrence

formula (4.1).
Notice that for y = 1, the relation (4.1) gives for any

value of o and B:

a-g-1

(4.5)  TI(a-g+1,x) = X e X+ (a-8)T (a-8,X),

which is the well-known recurrence relation for the incomplete

r-function [15].
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5. SOME INTEGRALS INVOLVING ¢(a,B,y, ;X).

In this section, we derive some integrals involving the
function (1.6).

The following theorems hold:

THEOREM 5.1, Let oy, B and vy be (real) arbitrary parameters.

Then the following relation holds:

e -
(5.1) |at 17 Y (ay,8,15t)

%

L}

1- -
= - ;—L_Xulw(az,B,Y;X) ~b(agta,,B,y;x) |,
1

for o; # 0 and x > O such that e ¥ < xB
Proof. The proof of (5.1) is easily obtained by integration
by parts, and using the fact that

. a
lim t ly(a,,B,y;t) = O,
t++w

for a«; > O.

Remark 5.2. From (5.1) one obtainSfor vy = 1:

=<

xalr(az'sax) - F(a1+a2-8,x) ’

f -
(5.2) | dt ¢*17! r(a,-p,t) = - 2

J %1

which produces the well-known relation [léjfor the incomplete
r-function:

o

f a;-1 1

(5.3) | dt t I'(a,-B,t) = - I'(a;+a,-8) ,

J 1
0

for a; > 0 and ayta,>B .
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Using THEOREM 5.1, on the basis of PROPOSITIONS 1.1 and

1.2 we are led to the followimg

COROLLARY 5.3. Let o and 8 be such that -e < g < O_and a>-|8].
Then

(
(5.4) v(a,B,v;0) = jdt Yp(a-+,8,v3t)
(o}

for any value of y.

COROLLARY 5.4. The relation (5.4) holds also when g = O,

provided that y > 0, a > 0 or y < 0, a > [y].

THEOREM 5.5. Assuming all the hypotheses of Theorem 5.1,

then the following transform holds:

oo

j gt o 0t 1 -n

X
1P(U,B,T;t) = E € Y (C‘)‘B:Y;X)

x

=

n K n
y (-1) ( )IJJ(OL"'nB’BsY"'k;X) +
(5.5) k=0 k

+
S

n k . ny\/ k (j-n)B-o
) E(‘”'WH( X )J’ P (-Grmse,ix),
k=1 j=1 k/\j

where n is a positive integer.

Proof. Consider the function e-nt Yp(a,Byyst) >, 1 being a

positive integer, and integrate by parts from x > O to infinity.

One has

-]

(
-nt 1 -nx
J dt e v(a,B,y5t) = o e b (a,B,Y;3X)
b4
(OO _ - —t 'Y-
-2l ar T e s )
Jx - t -

(5.6)
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Now, by using the relation

-nt n n -t
(.70 e ) (—1)k( ) (1- &)
0

18 k=

Eq. (5.6) becomes

©

(5.8) f dt e

X

nt -n

1 X
W(G,B,"r;t) = He 'b(a,B,Y;X)

1 o k[
= H E (-1) ( )IIJ(G"'I].B,B,Y*k;X)—w(GﬂIB,B,k;XJ ‘
k=0 k

Since k is a nonnegative integer, we may express

y(a+np,B,k;x) as a finite sum of incomplete Tr-functions, namely

Il ~1 %

(5.9) yv(a+ng,B,k;x) =

) k }
v 1( )j(J'n)B'“r(cn-j)sm,jx)
j=1 3

Inserting (5.9) into (5.8), one achieves the result (5.5).

THEOREM 5.6

"Suppose that the conditions -e < 8 < O and o »- |B|are

valid. Then one has

co

f -t
(5'10) J dt{-e v(a,B,y;t) - Y(a-1,8,y;t) + IP(C!"‘B'].,B,Y;T-)
0

“y(a+B-1,8,y*1;t)} = r(a),

for any value of the parameter y'".
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Proof. By putting n=1 in (5.5), we obtain
® -t -x
J dt e  ¥(a,B,y;t) = e " v(e,B,v;X)-v(a+B,B,Y;X) *
X

.11
(5.11) “p(a+B,B,ytl;x)-T(a,Xx).

In virtue of Proposition 1.1 the relation (5.11) is
valid also when x=0. Using then (5.4) the assertion is

proved.

6. SOME FUNCTIONS AND RELATIONS CONNECTED WITH THE y-FUNCTION.

a) '""Case" «y = 0.
Obviously one has y(a,B,0;x) = 0.
b) '"Case" y = 1.

For vy = 1 the function (1.6) specializes to the in-

complete I'-function. In fact, we have

(® —a-1 -
(6:1)  w(a,8,15x) = |dt ¢ Bl o r(a-g,x).
X

c) "Case" y = n (positive integer).

As we have already noted (see Sec.3), the function
(1.6) can be expressed as a finite sum of incomplete

r-functions.

d) "Case" y = -1, a = n +1, g = 0.

For y = -1 the function (1.6) becomes
(w tﬂ‘l
(6.2) w(a,B,-13x) = - Jdt 5
X e t -1
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Putting in (6.2) o« = n + 1 (n positive integer) and

B = 0 we get

(603) \U(n'*l, 0, "l;X) ==D(n, x) ,
where

Gl tl’l
(6.4) D(n,x) = ’dt

J e -1

X

is a function introduced by Debye in his theory of
specific heat of solids [18]. From now on, we shall call

(6.4) the incomplete Debye function.

Remark 6.1. For x = 0 and n > 1 the function (6.3)

becomes

{
(6.5) y(n+1,0,-1;0) = -D(n,0) = - | dt
) e -1

= -nl g(n+l) ,

where ¢(z) is the Riemann zeta function.

More generally, from (6.2) we deduce that

(
(6.6) y(a,0,-1;0) = - jdt = -T(a)z(a),
Q

for ¢ > 1.

Remark 6.2. We shall call generalized incomplete

Debye function, the integral
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(% t“-l
(6.7) |dt . ,

/ e -1

X

which appears on the right-hand side of (6.2). Using the
symbol D(a-1, x) to denote (6.7), we have

(6'8) $(a, 0, -1; x) = -D(a,x) ’

from (6.2).

Remark (6.3). Let us point out that one is able to

evaluate the sum of the series on the right of (3.3), for
any y = -n, which is also an arbitrary negative integer,

in terms of a combination of incomplete Debye functions and
other known functions. In the special case y = -1, taking

into account (6.8) we obtain

(6.9) D(a-1, x) = ]  —le.nx)

for each x > 0, from (3.3).

Furthermore, in view of (6.6) and (6.8), from (3.3)

we find the known expansion for the Riemann zeta function:

(6'10) z(a) = s AN w(G,O,'l;O) =

1 . 1
r(a) E

for o > 1.

To conclude the case d), we notice that (5.5), for



y = -1, =0, x=0and ¢« = n + 1 (n positive integer)

provides an integral representation for the finite sum
m

Z nel in terms of the incomplete Debye function

=1 ]

(6.4), namely

m (%]
1 m | -mt
I oo ] dte D(m,o).
=1 4 T
e) "Case" y = -3, B = 0.
For 8 = 0 and vy = -3, it also exists the integral

on the right of (1.6) for any a > +] when x = 0. Further-

more using the series expansion (3.1) one has

(2n-1)!! 1
(2n) !

(6.11) ¢(a,0,-3;0) = -T(a) }
n=1
If we now define the function

1
T (a)

(6.12) Z(a) = - \b(avoi-%;o)’

the relation (6.11) gives

(2n-1)!! 1
1 (2n)!! n

Z(a) =

2]

" e-1 8

for o > }.

f) "Case" g = 0 and a > max(0, =-y) (y# 0,1,2,...).
Both the series on the right of (6.10) and (6.13)

can be considered as special cases of the more general
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series:

bd

r(n-vy)
1 r(-y)n! n

(6.14)

N~ 8
Q
-

which converges for any o > max (0O, -y). From (3.3), we

deduce that the sum of this series is given by the function

1
r{a)

w(usO’Y;O)-

In order to show that the series (6.14) is convergent,
r(n-y)
n! -

for large n. In doing so, it is enough to recall that Ll9]

let us determine the asymptotic expansion of

—_— - -1
(6.15) T(az+b) ~ vZn e 2%(az)??*P72

for z » =, |arg z| <m and a > O.

Using (6.15), we thus have

(6.16) fa-y) o o™

n!

for large values of n.

Therefore, the convergence of the series (6.14) is

assured if o > -vy.
g) "A functional relation for the padygamma functions' .

The properties of the function ¢(e,B,y;x) defined
according to (1.6) can be usefully exploited in order
to re-derive a well-known functional relation for the poly-

gamma functions:
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n+l

6.1 s = St reo
dx

where n = 1,2,3, ... and x # 0,-1,-2,
More specifically, we will show that

PROPOSITION 6.5. '"The following_functional relation holds:

(6.1 41y = (Dt (ceens ]
. v : n. i1-g 4 jn+1

b,

where m is a non-negative integer and z(n+l) is the zeta

Riemann function'.

In doing so, let us start off with the integral re-

presentation EZO]

r°° n -(m+l)t
6.19) ™) (m+1) = - e 2=
J ‘t
0 1- e
Since
a-1 -t
(6.200 & y(a,0,-1;0) = 2,
dt 1- e
from (6.19) we have
(% -
6.21) ™ (m+1) = -1 Jdt e Mt E%_ y(n+1,0,-15t) ,
0

for o = n+l.

Integrating by parts, Eq.(6.21) yields
- rCD - -
(6'22) ‘P(n] (m+1)=(_l)n+l "i’(n+l,0:—1;o)+mldt e mtij)(n*l,o,-l;t)l
J !
- o -



- 23 -

In virtue of corollary 5.4 and theorem 5.5, the

integral on the right of (6.22) reads

re mt
(6.23) m |dt e p(n+.,0,-1;t) =
J

o

m m -
= ‘P(n*l,o»'l;o) - E (_1)1(( ) IJ)(H"‘].,O,]:(-].;OJ-I,U(II"'I,O,](;O):I.
k=0 k

If we set apart the term of (6.23) corresponding to k=0,
having in mind that ¢(n-1,0,0;0) = O and resorting to the
recurrence relation (4.1) for « = n and y = k, Eq.(6.23)

reads

(" -mt n k ™\ n
(6.24) m|dt e = y(n+l,0,-1;3t)= ) (-1) % ¥(n,0,k;0).
‘o k=1 k

Since (see (3.4))

K
(6.25)  ¢(n,0,k;0) =(n-1)! 7]

(_l)jﬂ(k)__x_ ,
j

./ .n
J

1 J

Eq. (6.24) becomes

(6.26) mJ dt e Mt v (n+1,0,-1;t) =

o

m k m k . k
-nt ] —%}3—( ) Z(-I)Jﬂ(.)—%.

k/ j=1 J j

By interchanging the summations in (6.26), with the help
of the identity



1 k)= 1 k-1
k . j ) !
J ) J-1

we are led to the expressicn

«©

f -mt
(6.27) det e yp(n+l1,0,-1;t)
(o]

-1yt

1™t k=]

m
I -1f

|

m

k

I

k-l)
j-1

At this point, we need to show two lemmas, namely:

Lemma 6.5

"Suppose that j and m are positive integers such

that 1 € j <« m = 1. Then one has

(-1)k+1( m)( k)-— 0."
j k/\ ]

Proof. Notice that

e (DGR

As a consequence, we can write

m m k m
(6.30) I (-DF 1( )( )( )
k=j k j j k

(6.28)

[ =

k

N

_From which, by putting h = k-j and taking into account

the hypothesis m - j 2 1, one finally gets



m i/ ™ k' o f M\ m=] m-j
(6.31) ) (-1)k l( )( )= (-1)’ 1( ) ) (-1)h( ):o.
=] j J h=0 h

k=1

Lemma 6.6
"Let j and m be any pair of positive integers such

that 1 < jJ < m. Then ome Ras

m m k-1 .
(6.32) I (-1)k+1( ) - (-1
k=) k /\ j-1
Proof. By putting
m m k-1
(6.33) £G) = 3 (-1t ( ) ( ) ,
k=j k/\j-1

for convenience, we can write

) m m m\ {ik-1 k-1
(6.34) £(j)+£(j+1)=(-1)7"" ) - ('13k+1( ) ( ) +(
j k=j+1 k[ V-1 j

m m k
k+1
= E ('1:’ ( ) ( ) ’
k=j k j
where we have used the identity
(6. 35) k-1 \ L1\ ( k ) _
i-1 ) j j
(6.34) we find

On the basis of Lemma 6.5 from Eq.

(6.36) £(j) + £(j+1) = O,

for 1 < j < m-1.
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Since f(1)=1, Eq. (6.36) tells us that

(6.37) £Gy = (-1

where j = 1,2,..., m-1.

We complete the proof observing that the relation
(6.37) also holds for j=m. In fact, putting j=m-1 we
have from (6.36) and (6.37):

f(m) = -f(m-1) = (-1)™1,

Now let us go back to Eq. (6.28). Using the result
(6.32), Eq. (6.28) becomes

[ -
(6.38) m|dt e y(n+1,0,-1;t) = -n!
Jo j

mt

.n+1

II-M =]
)_l

Then}making the substitution (6.38) into Eq. (6.23), we
obtain

- m -
(6.39) w(n)(m+1)=(-1)n $(n+1,0,-1;0) + n! )

- j=1  j -

Recalling that (see (6.10)):

c(n+l) = - =7 ¥(n+1,0,-150)

Eq. (6.39) finally produces the relation (6.18).

Remark 6.7

Using the identity
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k / k-1
- k (
J ) . J-1
Eq. (6.32) reads
m k+1 m \ "k j+
-1 ) -1
(6.40) 2 —L'l;—’— J( = L——l .
k=] k j J

By putting h=k-j into (6.40), with the help of (6.29) one has

) m m- m-j Jt1
(6.41) (-1)¥ R - L .
. h+j J
J h=0 h

By putting in (6.41) n = m-j, we are led to the formula

n
h 1 1 1
6.42 -1 — = = -
( ) h§0 (-1) irt+j J n+j
; j

which may be considered as a generalization of the well-known formula

Zn " _ 1

h=0 h+1

deducible from (6.42) when j =1,
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7. ASYMPTOTIC BEHAVIOUR OF ¥ (of ,fZ,¥ ;x) for x —» oO .

In order to derive the asymptotic behaviour of ¥ (& ,/3 , & 3x) for
large x, we recall for the sake of convenienc: the following generaliza-

tion of Poincaré€'s definition of & isymptotic expansion [21] :

DEFINITION 7.1 " A sequence {.4)5(3{)5 of functions such that

(7.1) b
- 0
$ )
S
forx = + <O and any s = 0,1,2, ,..., is called an asymptotic

sequence or scale as x —» + oo ,

Consider now a scale t*\’s(x)y as X <» » o0 , and let f(x),
fn(x) (n =0,1,2,...) be functions such that for every non-negative
integer N, the quantity

N-1

fx) - 2 £ (x)
(7.2) s=0

¢’N(X)

is bounded for x ~» 4 oo .
oD
Then the series SZ—O fs(x) is said to be a generalized asymptotic

expansion with respect to the scale {Cbs(x)} , and one writes

co
(7.3) f(x) ~o Z fs(x),' tq)s(x)} as X =>400 "
s=0

The following theorem holds:



THEOREM 7.2 "The function

( a-L} e_t v
(7.4)  w(a,g,y;x) = fdt t7  1-(1- =) |, (x>0)
JX I_ t _
admits the asymptotic behaviour
-3-1 - =
(7.5)  wlere,vix) v xTTETH TN T A )
s S
s=0 X

for x - + =, in the generalized sense of Poincaré (sece

Def. 7.1) with respect to the scale {—%—} , where
X

o]

mx

+1
(7.6) A_(x) = (-1)° *
s ri-v) 20 m+1)! (m+1)° lF[~a+(m+l)8+lemE

the series on the right of (7.6) being uniformly convergent for any

- . s : -X .
X > X, where Xx 1s such that the 1nequality e < xB is

verified".

The proof of this theorem will be obtained with the

help of a few lemmas. More specifically;

Lemma 7.3. " The following inequality holds:
N-1 m-1
(7.7 |t -y ettt sl <
m=1 r(l-a) (m-1)!
. 1 r(N-a) yN—1 e]a-N|y ,
(N=2)! r(l-a)

where y > 0 ",

1 ; T(m+l-y)T(s-a+(m+1)g+1l)e
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Proof. Recall first that, as is known, if f(y) is a

function having continuous derivatives up to the (N-1)-th

order enclosed, then

N-2 £LK) y
Y 1'— ) '..-2
(7.8) f(y) - 52—l ko1 Jf(“ Ve (y-1) N a.
k=0 k! (N-2)1 7o

If we deal with the case f(y) = {1+y)a-1 and put k=m-1,

Eq. (7.8) gives rise to the inequality

N-1 m-1
(7.9) a7t - ] p™t HEm) <

m=1 r(l-a)  (m-1)!

o4 - N -
. L Tae ™ Dy y-e N7
(N-2)! Jo
where
(7.10) fMN-1) iy o oVt LON=a) (5 ¢y0°N,
r(l-a)

t
Since 1+t < e for any t such that O < t < y, the

assertion comes out immediately from (7.9).

Lemma 7.4. " Let N be a positive integer such that N;Zfﬂén
N-1

F(a’x)x-aex _ E [—1]m_l r(m-a) ; <
(-, 11) m=1 F(l-Ct) X
I'(N-a) 1

< (N-1)

3

r(l-ua) E&ﬂa—N]N1
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for every x > | o - N |",

Proof. Consider the Laplace transform

p
(7.12) ' dz e f(z)
)O
where
- N r(m-a) ] m-1
(7.13) f(z) = (1+2)*7'- 7 (-1) = z
m=1 I(1-a) (m-1)!
In virtue of Lemma 7.3 one has
(e - -
(7.14) | |dz e *(z)| ¢ (w1 [Dle) b —
/o r(l-a) |_X-|a-N|'_|
for x > [ a-N|.
On the other hand, we can write
[ -zx -a X N-1 mI(m-a) 1
(7.15) | dz e f(z)=x "e"r(a,x) - § (-1) —
o m=1 T(l-a) x
where
[e =)

| 2 - - -
(7.16)  (of.x) = x e % {dz e X147
/
0
The Lemma follows then from (7.15) and (7.14).

Lemma 7.5. "Let N be a positive integer such that N>2and

s+1 1 E F(m+1-y)T(s-a+(m+1)g+1)e "~
r(-v) s+1 ’

(7.17) A (x)=(-1) :
S m=0 (m+1)!(m+1) r(]-a+(m+])s)xmb



where a,B and y are fixed parameters.

Then, if ¢ 1is any arbitrary pesitive number,

N-2
N gas gy x T e T A () —— 3 s
5=0 s xS
(7.18)
(N-1) (1+e)" E I (meT=v) | [T (N-a+(m+1)8) o "M
r(-v)] om0 (meT) ()N fr(T-as(men)e) | K"

1+¢
£

for x > [|8|+]a-N|]
(1.6)".

» where y(a,B,y3x) is defined by

Proof. Consider the integral representation of y(a,B,y;X)

as aiven by (1.9).

One has
(7.19) (1 -v)Y = 1 & —1 g Hmy) oyn
r(=y) n=1 n!
where
e-x(1+y)
(7.20) Ve —o—0 <1,
x (1+y)

for each y > 0.

Since the series on the right of (7.19) converges
uniformly for |[Y| < 1-e (e being such that 0 < ¢ < 1),
from (1.9) one gets integrating term by term

nx r°°
| dt(1+y)
)0

u-]-nge-nxy=

V(arBryix) = - — ) r(n-y) e

XnB
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o0
- - 1 ) I(n-y) n a+n8?(a-n8,nx)
T(-y) m=1 n!

where the representation (7.16) has been used.
21

Putting m = n-1, Eq. ) can be expressed as

1 xa—se-x Z r(m+l-v) X-mse-mx .

r{-v) m=0 (m+1)!

W(QSB:Y;X) = =

(7.22)
(Lmen)x] @ (M DE (ML ity e, (o)) )
Using now (7.22) and recalling (7.17), we can write

w(a,B,y;x)xB"“Hex_ ) A (x) — =

(7.23)
{[(m+1);]'“+(m+])Be(m+1)xr(a—(m+1)s,(m+1)x -

2 s I(s-at(m+1)p+1)

N
(=1) s+1
P(1-a+(m+1)g) [(m+1)x]

]
W ~11

s=0

Multiplying both sides of (7.23) by xN_], with
the help of Lemma 7.4 one obtains the inequality (see

Remark 7.6):



L7

N- R - L
T (aagyi) KB A =

(N-1) E Ir(m+1-) Mg =mX .

It(-v)] m=0  (m+1)!

(7.24)

I (N-a+(m+1)8) XN

I(1-a+(m+1)B) [(m+1)x-|a-(m+1)B-N|]N

for x > |8| + |a-N]|.
Now we notice that

N |
, I | -
(7.25) — X < 1|y o#1)fB[+]a-N]

Bnﬁl)x-la-(m+1)B-N[JN (m+1)M (m+1) (x-|8])-la-H|

Furthermore, for any ¢ > 0 there esists a value of

X, Say X , such that for any m:
e Ll

(7.26) (m+1)|8]+][a=N]|
(me1)(x=|B])=]a=N|

< E

for each x > x
€

In fact, the validity of (7.26) is assured for any

WLwhenever x > x , where
g

(7.27) x_ = [Jsl +|a-N;] 1:e .

Finally, Leama (7.5) follows from (7.24)after taking
into account (7.25) and (7.26).



..35_

Remark 7.6. The use of Lemma 7.4 in deriving
the result (7.24) implies _he evaluation of the Laplace
transform

| dt e-xtt N_1f

7o

where X =(m+1)x-|a-(m+1)g-N|, which exists if and only
if (m+1)x > |[a-(m+1)g~N| for any m.
Since fa-(m+1)8-N| < (m+1)|g] + |a-N]|,

we have

(m+1)x-]|a-(m+1)8-N| 2(m+1)(x-]8|)-]a-N].
Thus we need to require that (m+1)(x=|g|)=|a=N|] > 0
for any m, the latter being satisfied when x > [g[+[a-N].

Lemma 7.6. "The series

F(m+1-y)r(s-a+(m+1_le+1)x-mse-mx

O (me1)rme) St e (1-ak(me1)p)

(7.28)

"~ 8

m

which defines the function (—1)S+1P(-T)As(x), converges

absolutely and uniformly for any x areater than a certain

X satisfying the inequality e * < xBn,

Proof. Since

(7.29) 1 _ F(s+1-a+(m+1)p) o
(m+1) I(T-at(mtl)8)

as m~> +o , from a certain value of my say h%, onwards it

turns out that

1 T(s+l-a+(m+1)8) 1.
(m+1) Ir(l-a+(m+1)g)

(7.30)



Hence
EIB -mX
e (m+1-Y) [ [r(s+T-a+(m+1)g)| x .
(me1) 1 (m+T S”(r'm (m+1)f'7)|
(7.31)
. [T (m+1-v)| o TMX ME ’
(m+1)1!
for nlz’m%.

From (7.31) one deduces that the series (7.28) is

majorised by

(7.32)

-1 8

m (m+1)!

Recall now that (see (3.1))

- -m
r(m+l-vyje Xy me

(7.33)

I ~1 8

O (m+1)!

r (m+1- -mx -m
L (mtl-vy) M8

being the series on the Teft absolutely and uniformly

convergent for any x>X, where X
B

is a certain value verify-

. . . - X . .
ing the inequality e <x . The assertion arises therefore

from the fact that (7.32) is the

series appearing in (7.33).

Lemma 7.7. "The series

mo*th remainder of the
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T(m+1-v)

I (N=-a+(m+

|
Tl{l-a+(m+1)

(7.34) % N
m=o0 (m+1)!(m+1)

»

)8 ) lx-mse-mx
8)

which appears on the right Jr (7.18), converges uniformly
for any x greater than a certain X verifying the inequality

-X
e &Lx . Furthermore, one has

(7.35)  [xV TV gu(ane,ysx)xB ot TeX

NSZ ]
_ -S:OAS(X) — const,

X

as X + + w As(x) being defined by (7.17) and

(7.36)  const < [y|(N-1)(1+¢)"

F(N-a+8) ’

r(l1-a+g)

where N > 2 and ¢ is any arbitrary positive number".

Proof. The first part of the lemma follows directly
from Lemma (7.28).

As a consequence, the results (7.35) and (7.36)
arise immediately from (7.18). _

In virtue of the series of lemmas from (7.3) to

(7.7), the basic Theorem 7.2 is thus completely proved.

8. SOME SPECIAL CASES.

a) "Asymptotic expansion of the incomplete r-function".

The expression (7.6) can be written as

A (x)=(=1)% () Hlszererl)

T(-a+B+1)
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I (s-a+g+1) e’
+ (1=Y)(-Y) o+ " + oL..0)
21277 T (-a+2B+1) x

where the relation

(8.2) F—U"”—)*l My ) (m=Ty) e (25v)(T-y) (=)
I (-v

has been employed.

Putting vy=1 into (8.1) and using the symbol
(a)n _ I'(n+a) ,
r(a)
we obtain
(8.3) A (x) = (-1)° (1-a+6) .

Then Eq. (7.5) becomes

(8‘4) I,[J(Dt sB ’T;X) = F(Q—B,x) u XQ'B'-IE'X

which gives the well-known asymptotic expansion for

the incomplete Tr-function for fixed (a-8) and large x

(22].

b) "Asymptotic expansion of the incomplete Debye
function".

Let us remember that for g=0 and y=-1, the function

-y(asB8,v3x) reduces to the incomplete Debye function
D(a-1,x) as given by (6.8).
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In this case, from (7.6) one gets

-mXx

(8.5) A (x) = (-nS*! Hemerllop e

f(1-a)  meo (m+1)%F]

Recalling now the function[23]

m
Zz

~1 8

(8.6) 6(z2,5,V) = .
m=0 (m+v)

defined for |z|<1, v#0,-1,-2, ..., the series on the

right of (8.5) can be expressed by a(e ", s+1, 1).

Therefore (8.5) becomes

(8.7) A(x) = (-1) (1-a)s¢(e'*, s+1, 1).

Taking account of (8.7), (7.5) specializes to

(8.8)  D(a-1,x) ~ x*" ' ™ 7 (-1) (1-a), o(e”

for fixed o and large values of x>0.

Finally, let us point out that since [23] :

s-1 -vt
e
-t 4

—
o+

(8.9) $(z,5,V) =
r(s) 1-z e

for Re v > 0, the relation (8.8) can also be written

as



a-1 =X o S (]-a)s ts e-t

(8.10) D(a-T,x) ~ X 7(-1) dt
$=0 sIx 1-¢” (X¥)

JO

9. SOME FUNCTIONAL RELATIONS.

It is easy to show that
. ) ...(59‘_'.1) s . )

I‘;—LX-S‘WW‘U&K}X)] =X Z’(f’-x-f-yv_,)‘f"(dwf"?,a;x)r
X

(9.1) | |
+ X[ Y( 9(1"‘“{5; Kj' X.) - L)V(uf.'f‘}[z,v'd’-f,’)().-‘/‘) Lf(“:{ f}/ ¥- 'f x)\j-jr .

In fact, we have

“$r 1;[-’ Y p s %)+ xdﬁf—(f- j‘l‘p ) J/.- :

--f . _—
(9.2) %Lx ‘r(“,ﬁd’,)‘)_}‘ x

The result (9.1) is thus achieved with the help of the

recurrence relation (4.5).
Putting f = -X-b’f} , Ea. (9.2) takes the form

r (e L Adgp Y
£ ] s T
(9.3)

.[Wu P8 x)= )V(;f;!ﬁ,, of_,/.x)-fv Y, 4 f-f,-x):f/

which for ¥ = 1 becomes the well-known functional relation

for the incompliete f'-functidn s

~ ~(&=f+1)
£ ) e )
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where l—'(ot'-uﬁ/ x) = l//(«;ﬁ, 1, ’()/
and Lf/(d'u(b}c?}‘ X) = 0.

Following the same procedure used in deriving Ea. (9.1)

one can also demonstrate the more compiicated relation
"(d"{/") *® §+1)
[X ‘Ff«Mx)J e LoHars fgx) - RO tfiar fr,

(9.4) = 2P(x-1) Wb, B, 1) x)+(6=1)(p ) Plure, fo 42 x) +
t ’/f"‘”’(d,ﬁ,'&’-f,‘ X}r%('d’-f!(}’{gr;ﬁ, zr-a,'x)yf%‘(d’-l/ V’(ajvﬂ/ r—z,'x;j .

One could at this point Took for a general expression
for the n-th derivative of the function x“dip}'+fﬁj% 37’7
with respect to x. This task is auite cumbersome; here we
1imit ourselves to provide such a generalization for the
case j% = 0 (the parameters ¢ and ﬁ being left free).

To this end, setting in (9.3) ‘/%: 0 one has

v

i ., “(d+1)_ ) .
(9.5) f,%— [x—& K(d.,(,‘x)} ==Y X * [ K(O(-HI d’/'x) —J‘((m-i/ d’-r/x)]/

where the symbol K(d .Y ;x) stands for the functionVf (4,0, ) x).

Now with the help of Ea. (9.5) we obtain

5 G ol T K-

(9.6) ‘ :
+ Y(-2¥) K(a+2, b‘sj/')‘)—a’(d’—T}K(NT2|X~Z/' <) |-

In the same manner we can write generally
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i M ~ (M) my ('h),(

0:1) T DT K g0 XL, K ln g e Kleni
X i) |

T, wa*“vf”%*k]/

where the coefficients a(n? (i=0,1,2,...,n) have to be de-

termined.

In doing so, let us differentiate the expression (9.7)
with respect to x. Using the result (9.5) one gets

J T IR .
g;&ﬂ%'k?};%+gg;gj+

cl‘nff A1 | ] —(,x-;-‘“i-f
T Cx Ky %] = x
?_
n)

— {(m) { .
(9.8) +L Ka’m —(‘r—”d’n"f]K[d*—%Tf/ (r-f,')() +

(M)

+ K(X’U&%‘

n)

( /o _
r—{rdz)am-z, 1K (krmet ¥o2,%) *

(m)
M o Cf’nl)&v )

On the other hand, comparing (9.8) with the expression
which one obtains from (9.7) replacing n by n+l1, we are led

to the following relations

(n+1) (n)
(9.9) a = - ¥a

n+l

(9.10) a(";’” - (¥-n) (M

and

(9.11) a(n+1) = (5’-i) a(n). - (X"1'1) a(n) ’
n-i n-i
where i = 0,1,2,..., n-1.
- (n) (n) .
The coefficients a n and a o are easily found.

Indeed, iterating (9.9)
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(9.12) a(r?:]]) - (-n™Mly ™

1
where the relation a(]) = - X’ has been used. Eas.(9.12)
and (9.9) give

(9.13) a(:) - -n"y".

Now from (9.10) we deduce that

Oyl s ey AT L

0
(9.14)

= (Y- (X ) (X -1 Y

where we have substituted a(;) = )/. Eas. (9.14) and (9.10)
yield

(9.15) 2N = (f mney(y -nve) L (pony - D
(7 (y-n+1)

Let us now calculate the coefficients a(z)i.

To this end, consider the relation (9.11) for i=0, j.e.
(n+1)  _ (n) _ . (n)
(9.16) a' =Y a ) (¥ -1) 2, -

By iteration and with the help of (9.13)., from (9.16)

one has

1 AL A
O A - e

(9.17)

- (-1)"[ Y YN Y1y YR 3’-1)“'1+X(3/-1)”] .
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Since the expression between the sauare brakets is a geometrical

proaression of the ratio (3’-1)/3’, Ea.(9.17) yields

(9.18) (g1:1) ) (_])n5/£}/n+1 i (3,_])n+11 .

Finally from (9.18) and (9.16) we obtain

(9.19) &M - e[ (x-n" -y"J .

n-1

Our purpose now is to calculate the coefficient a

3 —~

n)
-1
for any i=0,1,2,..., n-1. To this end, we start from

(9.11) and iterate a(n? .
n-i-1

We have

1) (Y -1) aﬁ?g S -ien) ,(n) -

n-1i n-i-1

i 2_ ar(,:ki ({-1)(3’-1_1)"(_1)"+

p-n)"T et U0

0

Finally, Ea. (9.20) gives
m-1-Ky

a(g). (X—iﬂ)z 2Lk iy Ty

k1=0 n-1-k]

(9.21) + (_1)n-i (3,_1)n-1 a(i) ,
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where
. 7
(9.22) a(;) . L) L io= 0,1,2,....n-1.
M (y-i+)
To derive explicitly the coefficients aﬁ?i in terms
of n, i and ¥ , we use repeated iterations of (9.21). To

facilitate our task, it is advisable to take into account
that: the index i appearing in (9.21) can be interpreted

as the difference between the upper and lower indices of
(n )uwud(v‘VL -v)

the coefficients a i)”%n be regarded as the lower index

n
of aﬁ_g. Hence, in virtue of these considerationsfrom (9.21)
we deduce that:

k ) ook k b, kg
(- 1=F r-t,'\'l)z a/('“— o lz 2/ (r'b'f“) (- 1) +

%_bﬁhi 'l‘L“’f.« P1‘ 2
(9.23) hz-o
n-c - e 5 mft-kf (C-1)
t(-1) (a"L +1) a, y
for i 2 2.
Inserting (9.23) into (9.21), we obtain: ‘ k »
noest g g 200 Ky
_(3’—,,+1,(5’-.,+.o)2{3/- ) (-1) & (d’—-u-é-f)
(9.24) - k=0 4y=o
)/'12’ (h-2- & }Z:L)
» ("‘1 Qd . _ t+
’h.-c.-'h..,-hz
/H':_E--i k-{ N-v ) -,: - }?_,4 (‘:_1)
*‘(A"’L-H)Z (J’-b) (-1) (- L‘i“!) Q,o 4

k=0 L
m=-c ()

+ (- 1)0L-"(3"¢;) X, .
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After (i-1) iterations (i 2 2), Ea. (9.21) yields
. ’Yl.‘l-""

in) . o n- k' Y.
a’%"t: = ((\/—er)(lf'-r;-r,z,)... £(")3/- Z ({_L) (-f) 7
Ef:O‘
nec by - £, ‘-
S pz £Z ™y ‘ . 2_ é
, e e 2 b p mi= Z Am)
kZ (d’ 1-1) 4 ” ) (r_f) (..1) fa/ v,ﬁ
=0 o —
2 é;==0 (n gg, m )
. Mee~1
| . - R L
F i s (a1 0 (Fee) -1)
(9.25) ° o
T, 1=
M"f.: ",mz;r ém ,_‘_11?
R, - M-t — &
‘.2 (5’-1) (& -1) m=1 m.-'.“l
[2&._' =0
. m—t-"‘f ._k _
4 n-c - K
-t _ . 1 . -1)
L+ (-—1)% (X-c-r:)E (¥-c) (¥-c+1) a_(: +
h,:O
n-1 , m-v (L)
e o(-1)  (r-<) a4,

Taking account of

/-71-'(.‘_ Z_‘km) “YL"L_ "'Z_‘ém 14-1'-7' Z é,th
(9.26) a m=1 = (-1) m=i | mq

mo-c -2 B | /
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(see (9.13), and of

(9.27) (Y -i+1)...(¥-3) a(g) = [ (¥a) ,

7y -i+1)

where
(9.28) a(g) = 3’-j+1)( 5’-j+2) Ce (3’—1)3’

(3 = 1,2,..., i-1), Ea.(9.25) can also be written as

] "~ - 4-12—12.,.,,
(m) 41'01 (§+1) =
@ =1 - 3’ ] ]; () J‘
/ (J’ 07'4) d“‘"‘f . 0
é-1
R r__ﬂ_{fm Lok,
v Py ] ) (5-c+ 1) G-y) ¥
J=1 €=1 k’ _ 0
) =
m-v o om-o (o _
(9.29) AT IRy j —
) 3-1
_ - : '—J m- f-
e (1) /Z(""J’ 7_7-2_*0’”&’1)(”)
(rﬂ‘b‘r"/ ) ef
M-t

+ (x-o) ‘
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Finally, using the notation

/

g-1
930 Ay = (=) - 6(22) 2 ..

where J}j is Kronecker's symbol and

. | { 1()0’?- 822
| 9{{2']‘):{ 0 j.ln ¢ <2,

(n)

the coefficient a as given by (9.29) can also be ex-

pressed in the more compact form

m) e L) Z(a* -}) 7— Z_ (d’ﬂ,ff‘r)(d’-)/

(9.32) Q@  =(-1)
v Plr) o e 0

where 1 = 2,3,..., n-1.

In virtue of (9.13), (9.15), (9.19) and (9.32), we have
determined explicitly the expression (9.7) for the n-th

derivative of the function x °%ﬂ¢£,5/;x)
Remark 9.1

For a’- 1, (9.7) reduces to the functional relation
for the incomplete r1 -function

(9.33) F_[x'd[ﬂ(o{ x)J (-1) x

[d‘r%) [0(1-’)'1 ?‘)

In fact, when & = 1 from (9.13) and (9.15) we have

. n
resepctively aﬁ?? = (-1) and 3(2) = 0. Furthermore, Ea.
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(9.21) yields aé?g =0 for i = 1,2,..., n-1. The resuilt
(9.33) thus follows immediately from (9.7).
We point out that for ¥ = -1, Eus.(9.13), (9.15) and

(9.19) become respectively

(9.34) a(:) =1,

(9.35) a(g) = -1)"m
and

(9.36) £ % = 1 - 2",

On the other hand, from (9.32) we have that

1 he -k,
(9.37) a . 1'427(4)(4+J) ] (2+¢-€) G*J} p
n—
J"O ezi"'(j:a

for i = 2,3,..., p-1.

Since (see ( &,3))

(9.38) K ¢ o) -15x) = - D(o/-1.x),

with the help of (9.34), (9.35), (9.36) and (9.37), Ec.(9.7)
gives a relation for the n-th cderivative of the function

-
X D{el-1,x), where D(el -1,x) is the Debye function defined

by (6,3 ). As far as we know, this formula is new.

We close this Section by noticing that, analogous to

the manner in which we derived (9.7), one can obtain a
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formula for the n-derivative of the function e‘xkf {af,g/;x).

40 - ANOTHER RECURRENCE FORMULA.

The use of ( B.1) and « = relation (9.1) allows us to
write down another recurrence formula besides (4.4).

In fact, by integrating term by term (9.1) with =§ =M
and aFFﬂying (5.1), we find the foflowing relation:

(u+a'YB)¢(a+paBsy§X)”Yw(a+u+]sBsY;X) +yy(atu+l ,8,y-T3x) +

+yByY(atp,R,y-13x) + Xu[(-a+yﬁ) p (asB.ysix) +

(40 -1)

+yv(a+T,8,y5x) - y¥(at],B,y-1:x) -st(a,e,v-1;X)J = 0.

Remark 10Q.1

When 3/= 1, Ea. (40.1) gives the well-known recursive

relation for the incomplete {7 -function:

(u+a) T (a+u,x) = T(a+p+l,x) + x“[}(a+1,x) -

(10.2)

where a = a - B.
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