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-the decision time is bounded by a polynQmcal in IX\ and k.

QEO

Since no example is known of a ~roblem which is strongly

simple andnot p-simple no application of theorem 4 can be

provided which is different from the application given at the

end of theorem 3.

As a conclusion of this paragraph we may observe that

the results provided insofar have a twofold implication. Qn

one side they can be used in order to characterize the com­

putational complexity of one problem with respect to the

given definitions, on the other side they establish condi­

tions on the type of reductions that can be found among

problems belonging to different classes, such as those

discussed at the end of theorem 2 and theorem 3. As a fur­

ther example we may observe that in the case of the reduc­

tion from PARTITION to HAX-CUT the existence of a much more

succint reduction than the one given by Karp is ensured by

noting that the first problem is strongly simple while the

second is weakly rigido

4. STRONG NP-COMPLETENESS ANO ITS RELATION TO RIGIOITY

In the preceding paragraph we have seen that in some

cases the characterization of a problem B that is not fully

approximable comes out of the fact that we can reduce an

NP-complete combinatorial problem AC into a subset of BC in

which the measure is bounded by a polynomial.Garey and

Johnson give another way of considering subsets of the set

INPUT of a problem to study the different characteristics of

NPCO problems. Their paper (1978) is an attempt to understand

the different roles that numbers play in NPCO problems. Let
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•

us first consider, for exarilple, the problem MAX-CUT that is a

well-known N~CO problem; If we restrict to those graphs

with unitary weights we obtain a seemingly easier problem
• •

SIMPLE-~iAX-CUT, that, .. hciwever, is stillan NPCO problem.

Different is the case of the problem JOB-SEQUENCING-WITH-

DEADLINES: it has been shown to be NP-complete by Karp,

but if we restrict to the case when alI weights are unitary

then the problem is solvable in O(n 19 n). Moreover if the

weights are at most k the problem is solvable by a classic

dynamic approach in time bounded by a polynomial in k and

in n (the number of jobs). Note that a polynomial algorithm

must solve JOB-SEQUENCING-WITH-DEADLINES in time bounded by

a polynomial in n and in 19 k.

In order to formalize these observations Garey and

Johnson introduce another function of the input MAX: INPUT ->- z+

that captures the notion of the magnitude of the largest

number occurring in the input. For example given a weighted

graph G, MAX(G) can be defined as the value of the maximum

weighted edge. The following definitions formalize these

concepts.

DEFINITION 8. A pseudo-polynomial algorithm is an

algorithm that on input x runs in time bounded by a poly­

nomial in Ixl and in MAX(x).

DEFINITION 9. An NPCO problem is a pseudopolynomial

NPCO problem if there is a pseudopolynomial algorithm that

solves it.

DEFINITION 10.

problem obtained by

in INPUTq for which

Given a problem P let

restricting P to only

MAX(x) 2. q(lxl)

P denote the
q

those instances x
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PROPOSITION-2. If P is NP-complete in the strong sense

then it is not fully approximable.

Garey and Johnson give another result that connects the two

concepts of pseudopolynomial and fully approximable NPCO

problemi for clarity sake, we will give it later as an im­

mediate consequence of Theorem 6.

In many problems the optimal value of the measure and the

MAX of the input have the same size or it is possible to

establish a polynomial relation between th6n. This suggests

the idea of comparing some of the different concepts in~

troduced in the preceding paragraphs and in this one. First

of all we can prove the following •
•

FACT 1. Let A be a pseudopolynomial optimization pro­

blem. If there exists a polynomial q such that for every

x E INPUT
A

;·lAX(x) ~q(m* (x)-ri\(x), Ixl), then giv;n (x,k), ìt

is possible to decide in polynomidl time if m (x) ~ k or

*m (x) > k.
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PROOF. The hypotheses i~ply that there exists a poly-
. .. *

nornial p such that, given x,:m (x)is cornputable within

time p ( Ix·1 , : MAX (x)) and, therefore, within tirne p ( Ix I ,

q ( (rn* (x) -iii (x) ), Ix I) ) . We apply the pseudopolynornial algo­

rithm to x for p( Ixl ,q(k, Ix/) steps. If the algorithm stops,
* *it is decidableif rn (x) ~ k or rn (x) > k; instead if the

algorithm does not terminate in p(jx\,q(k,lxl)), then

*m (x) > k

QED

As all known pseudopolynomiàl algorithms rnake us of

dynamic programming, it is possible, very often, to state

fact 1 in a more interesting way.

FACT 2. Let A be a pseudopolynornial optirnization pro­

blem. If there exists a polynornial q such that for, every
. * ~ Ix E INPUT

A
' MAX(x) ~q(m (x)-m(x),lx), then A is p-sirnple.

THEOREM S.Let A be a p-simple problem. If there

exists a polynomial q such that., for every x E INPUTA '

* ~ I(rn (x)-m(x)) ~ q(MAX(X), Ix ), then A is a pseudopolynornial

NPCO problem.

PROOF. By the hypothesis for

zable in Urne Q ( Ix I , k). To obtain

lowing algorithm:

for k : = O to q(MAX(x),lxl)

repeat the following step:

h k A
c . .

eac k ~s recogn~-

*rn (x) we can use the fol

if (x,k)EA~ * ~then m (x) =m(x) + k
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By hypothesis there are no more than q(Max(x) ,jxl)+1 itera­

tions of steps 2. As A
C i's p-simple each iteration of

step 2 takes no morethan Q(lxl,q(HAX(X),jxl)+1). Therefore
••m (x) is computable in at most(q(MAX(x), Ixj)+1) oQ(lxi,

q (IlAX (x) , Ix I ) ) • QED

COROLLARY. (Garey and Johnson (197d». Let A be a fully

approximable NPCO problem. If there exists a polynomial q
* '"such that for every x E INPUT

A
(m (x) -m (x) )..:.q (MAX (x) , Ix I)

then A is a pseudopolynomial NPCO problem.

PROOF. Immediate from the previous theorem and the fact

that a fully approximable problem is p-simple. QED

As the condi tions of theorem 5 and Fact 1 are generally

verified the two concepts of pseudopolynomial problem and

p-simple problem coincide in many cases.

A natural question arises at this point: when the con­

ditions of the theorems are not verified which of the two

approaches gives a better information about the complexity

of approximate algorithms?

Let us define

(P1 )
n

Max L
j=1

c.y.
J J

n
subject to L

j=1
a.y. = b

J J
j=1,2, •.. n

A natural definition of MAX(INPUTp1 ) can be the following

MAX(x) =max(c.,a.) and it is not hard to prove that P1 is
j J J

pseudopolynomial (a classic dynamic approach solves it in

O<n 2 MAX(x»); however even the problem to obtain any ap­

proximate solution is an NP-complete problem (Karp (1972).

Therefore P1 is a pseudopolynomial NPCO problem that is not
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approximable.

Let us consider now:

(P2)
n y.

TTc. J
j=1 J

subject to
n y.

TTa. J ~b ,
j=1 J

j=1,2, .•• n

This problem is fully approximable and we conjecture

that it is not a pseudopolynomial problem because the clas­

sical method of deriving a pseudopolynomial algorithm from

the dynamic programming approach does not work. Theorems 5

and 6 and the previous examples show that Paz and Moran's

approach has a wider application for two different reasons.

First their approach is straightforward and there is no need

to introduce the function MAX whose definition can be

ambiguous in some cases.

In addition we have proven that the two approaches are

equivalent under restricted but reasonable hypotheses and we

*have shown that when m (x) and MAX(x) are not polynomially

related the approach formulated by Paz and Moran remains

adequate to study the complexity of approximation schemes

for NPCO oroblems.-
Before finishing this paragraph we want to observe that,

when there is a polynomial relation between the value of the

optimal solution and the value of MAX , there is a strong

connection between the two concepts of strong NP-complete

and weakly rigido

THEOREM 6. Let A be a strong NP~complete optimization

problem. If there exists a :Jo1ynomial p such that for every
* '"x E INPUTA (m (x)-m(x»~(MAX(x), Ixl) then A is weakly

rigido
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PROOF. If A is NP-complete in the strong sense there

must exist a polynomial q such that

Q = {( x , k ) I( x , k ) E Ac, MAX (x) ~q ( Ix I) }
. . .

Let us consider now the set

.

the following set

is NP-complete.

Q' = {( x, k ) I( x, k ) E Ac , MAX (x) <q ( Ix I) ,ti( (x) ~k <ti( (x) +p (MAX (x) , Ix I) }
As Q :J Q' in order to prove that Q =: Q' it is sufficient to

prove that

Q-Q' : {( x, k ) I( x, k ) E Ac, MAX (x) <q ( Ix I), k~;;; (x) + p (MAX (x) , Ix I) }

is the empty set. In fact given (x,k), with k>ti(x)+p(MAX(X),
'V - *

Ixl), we have by hypothesis k>m(x)+p(MAX(x),!x!»m (x) and

therefore (x,k ) ~ AC
• Let us consider now

Q" = {(x,k}l(x,k)EA c , ti(x)~k<ti(x)+p(q(lxl, Ixl)}

Clearly Q" is NP-complete and hence A is weakly rigido

QED

5. CONCLUSIONS

In this paper we have shown that there exist close

relations among different approaches to the classification

of NP-complete optimization problems, giving also new results

on the type of possible reductions among problems belonging

to different classes. On the other side, it was prove n that,

violating some conditions, comparisons among different

concepts do not hold any more.

Therefore we believe that, in the whole, our results

are a useful contribution for a better understanding of

properties of NPCO problems. We think that in order to

provide meaningful characterizations of NOCO problems it is

necessary to find the suitable level of abstraction because


