
3.

1. rNTRODUCTION

Various results on the properties of NP-complete optimi

zation problems and on the characterization of these problems

either with respect to their approximation properties or with

respect to their combinatorial structure have been presented

in the literature.

In particular we have considered the approachésgiven by

Paz and Moran (1977) and by Garey and Johnson (1978) because

of the interest of their results.

Paz and Moran introduce a classification of NP complete

optimiza~ton problems based on the fact that consideringonly

those inputs of the problem whose measure is bounded by an

integer, it is possible to divide all the problems in dif

ferent classes as regards their computational complexity

(rigid, simple and p-simple problems). Furthermore these

classes are then related to the approximability properties
of the problem.

Under a different approach Garey and Johnson give another

characterization which is based on the concept of strong

NP-canplete problem (limit:.ng ourselves to those inputs,whose

"value" is bounded by a polynomial in the length of the

input, we still obtain an NP-complete problem) and of pse

udopolynomial algorithm (an algorithm which is polynomial in

the length of the input and in the magnitude of the greatest

number occurring in the istance). Also in this case very

interesting relations among these concepts and approximation

properties are stated.

These papers, are, without any doubt, very interesting

and new results of remarkable importance have been captured.

Nevertheless, it seems to lack an attempt of organizing all

these results in a unified framework as general as possible.



4.

Furthermore any effort of comparison among different appro

aches has not been attempted.

The aim of our paper is therefore a first step in this

direction. 5tarting from the observation that, intuitively,

there is a similarity among some of the consequences of Paz

and Moran, Garey and Johnson approaches, we have introduced

a formaI framework in which it is possible to establish

clear connections among different concepts of the two ap

proaches, at least under restricted but reasonable hypothe

ses. 50, for istance, we have established under what condi

tions a pseudopolynomial problem is p-simple and viceversa.

Beside this, our point of view allowed to derive some new

consequences both concerning the classification of problema

and the characterization of reductions that exist among dif

ferent problems. We have stated what conditions must be

verified to have a polynomial reduction from a rigid problem

to a simple problem, from a p-simple problem to a p-simple

problem and 50 ono Finally it seems interesting to us that

some of these results can be interpreted as a formalization

of facts that are used in practice when studying the solution

of a particular problem, such as, for example, the fact that

a problem with polynomially bounded objective function cannot

be fully approximated.

In particular, in §.2 we give the basic terminology and

notation. In §.3 we very briefly summarize the Paz and Moran

approach with a slightly different formulation, giving new

results such as those above stated concerning the characteri

zation of reductions among problems belonging to different

classes. In §.4 after recalling the main definitions and

results of the Garey and Johnson approach, we establish under

what conditions the results of these two approaches can be
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compared, eventually exhibiting some examples which show

that violating the conditions, the two approaches lead to

different conclusions in the classification of NP-complete
problems.

2. BASIC CONCEPTS ANO TERMINOLOGY

In order to establish a formaI ground for the study of

the properties of optimization problems we first give an

abstract notion of optimization problem which is broad enough

to include most common problems of this kind. Following the

literature (Johnson (1973), we consider an NP-optimi

zation p~~bLem to be characterized by a polyno

miaIlv decidabie set INPUT of instances, a polynomially

decidabie set OUTPUT of possibie solutions, a mapping

SOL:INPUT ~ P(OUTPUT) which, given any instance x of the

problem, in polynomiai time nondeterministically provides

the app~oximate 8oLutions of x and a mapping m:OUTPUT ~ Z

(where Z is the set of relative integers) which in polyno

miai time provides the mea8u~e of an approximate solution

(if A is a maximization problem) or its opposite (if A is

a minimization problem). Note that in this way we aIlow a

uniform approach to both maximization and minimization pro
bIems.

Since we are interested in studying those optimization

problems which are "associated" to NP-complete recognition

problems we restrict ourseives to considering a particular

class of NP-compiete problems:

DEFINITION 1. Let A be an NP optimization probiem. The

oombinato~ial p~obLem aS800iated to A is the set
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On the base of this definition we exclude from our

study those problems which are not directly related to

optimization problems(*).

If AC is NP-complete we say A is an NP-complete optimiz~

tion (NPCO) problem.

We wlll denote ~(x) and m*(x) the worst and (respecti

vely) the bes t solution of x with respect to the ordering

of Z. In many cases the worst solution can be easily (in

polynomial time) determined • In those cases we will refer

to it as a trivial solution.

EXAMPLE. The problem MAX-CLIQUE is an NPCO problem. It

is characterized by

INPUT = set of aH finite graphs,

OUTPUT = set of aH finite complete graphs,

SOL (x) = set of alI complete subgraphs of a graph x

m(y) = no of nodes of y

The combinatorial problem {(x,k)lx has a complete subgraph

of k nodes} is a well known NP-complete recognition problem.

In this case ~(x) = 1 is clearly the trivial solution of the

optimization problem.

For this particular class of NP-complete recognition

problems the conbept of reduction (Karp (1972» can be spe-

(*) In their paper Paz and Moran (1977) suggest that any NP

recognition problem can be represented as an optimization

problem but we prefer a more straightforward and explicit

definition.
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cialized and it can be extended to the associated optimiza

tion problems.

DEFINITION 2. Let A and B be two NP optimization pro

blems. We say that A is poLynomiaLLy reduaibLe to B (A ~ B)

if there exist two polynomially computable functions

such that

Throughout this paper we will deal only with this kind

of reductions. For simplicity we will say A reducible to B

and we will drop the subscript p from ~.

Since we are interested in discussing the approximabi

lity of NPCO problems and reductions between problems with a
different behaviour with respect to this property, we first

give some basic definitions that introduce the concept of

approximate algorithm, of approximable problem and of fully

approximable problem (Sahni (1975), Paz and Moran (1977».

DEFINITION 3. Let A be an NPCO problem. We say that

i) A is an approximate aLgorithm for A if given any x E INPUTA
A(x) is in SOLA (x) and A is computable in polynomial time.

ii) A is an €-approximate aLgorithm for A if it is an ap

proximate algorithm for A for every x E INPUTA

*
1
m (x) ;m(A(X» I < €

m (x)
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OEFINITION 4. Let A be an NPCO problem; we say that

i)

ii)

A is approzimab~e if given

e-approximate algorithm;

A is fu~~y approzimab~e if

ÀXÀy[q(x,y)] such that for

e-approximate algorithm A
e

by q ( Ix I ,1/e)

any e > O there exists an

there exists a polynomial

every e there exists an

that runs in time bounded

Many results in the recent literature are devoted to

establishing whether a given problem is approximable or

fully approximable or it cannot be approximated. For example

it is known that the MAX-SUBSET-SUM problem is fully ap

praximable while the MIN-CHROMATIC-NUMBER prablem has been

pròven not to be approximable for e < 1 (if P ~ NP). A list

of papers dealing with results in this area is provided by

Garey and Johnson (1977). At present no result is known that

shows that a problem is approximable but nat fully approxi

mable neither is known any precise characterization af the

class of problems which are approximable or fully approxi

mable. The results given by Paz and Moran (1977) and Garey

and Johnsou (1978) are nevertheless an important step for

ward in this direction. For this reason our aim has been to

determine conditions for the comparison of these results and

at the same time to develop this kind of research and to

derive consequences which are useful for a better under

standing of the properties of NP-complete optimization pro

blerns.

3. TRUNCATEO COMBINATORIAL PROBLEMS ANO THEIR PROPERTIES

The first appraach (Paz and Moran (1977» to the cha

racterization of NP-complete optimization problems 1s based
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on the complexity of the recognition of an infinite sequence

cf bounded subsets cf the associated combinatorial problem.

Informally, if we consider the search space that has tc be

explored in order to find approximate solutions to an opti

mization problem we may cbserve the following facts. Clearly,

if the size cf the search sE'ace is polynomial in the size of the inIllt the

problem itself is polynomially solvable. In the case of those

problems which are in the class NP but which are not known

to be polynomial an a nriori evaluation of

the size of the search space indicates that it grows expo

nentiallv.Nevertheless in manv cases when we consider the. -

search space that we have to explore in order to find ap-

proximate sclutions whose measure does not exceed a certain

bound, we may notice that it is polynomial. A typical example

of this kind of problems is the problem MAX-CLIQUE in which

the complete subgraphs of size k in a graph af size n are

at most (~) ,that is polynomial in n. Since this does nat

happen in alI cases it suggests the following definition.

DEFINITION 5. Let A be an NPCO

·associated combinatorial problem. A
prob~em of A is a set

cproblem, let A be the

truncated combinatoria~

where k is any nonnegative integer.
c ~ cNote that the sequence {A
k
-)- approximates the set A

k=O
in a sense which is analogous to the definition of limit

recursion approximation (Gold (1965».

DEFINITION 6. A is simpZe

nomially decidable. A is rigid

"f f k AC
"~, or every , _ ~s

k
if it i·s not simple.

poly-
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Note that if A is rigid there exists an integer k such

that A~ is p-complete that is A= is in p if and only if
k k

p = NP (see Sahni 75).

Examples of simple NPCO problems, besides MAX-CLIQUE, are

MAX-SATISFIABILITY, MIN-CHROMATIC NUMBER etc.

Definitions 5 and 6 are slightly modified with respect

to the corresponding definitions in Paz and Moran (1977). In

fact we always start from the set AC in which alI pairs
~ o _

(x,m(x) ) are included and, as long as k increases,we go

further and further from the worst solution to the optimal

solution.

For example the problem MIN-CHROMATIC-NUMBER, which is

rigid according to the originaI definitions, is simple in

our case and this is because, given any h, the set of pos

sible colourings of a graph of N nodes with N-h colours has

polynomial size in N.

On the other side an example of rigid NPCO problem is

provided by MAX-WEIGHTED-SATISFIABILITY because if we allow

weights equal to zero even the set A
C is in this case
o

NP-complete because in order t.O decide whether a formula w

has measure O we first need to prove that it is satisfiable

(Ausiello et al. ("1978». Note that if we instead do not

allow weights equal to zero the problem MAX-WEIGHTED-SATIS

FIABILITY can be proved to be simple.

Note that if a problem is simple, then its worst solu

tion is actually atrivial· solution, that is it can be al

ways found in polynomial time.

The concept of simple problem can be strengthened in

the following way:

DEFINITION 7. An NPCO problem A is p-simp~e if there

is a polynomial Q such that,for every k,A~ is recognizable
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in deterministic time bounded by Q{lxl,k).

Typical examples of p-simple problems are MAX-SUBSET

SUM, JOB-SEQUENCING-WITH-DEADLINES etc., while the above

listed simple problems are not p-sirnple. We will discuss

later on this clairn.

Beside offering a first classification of NPCO problems,

the concepts of simplicity and p-simplicity are relevant

because it has been proven by Paz and Moran (1977) that a

necessary condition for a problem A to be approximable (fully

approxirnable) is that A is a simple (p-simple) NPCO problem

and clearly these properties stili hold under our definitions.

Actually the fact that until now no problem has been

shown to be approximable and not fully-approxirnable, determi

nes a greater attention on the concept of p-simplicity; but

in order to prove that a problem is not p-sirnple it is very

hard to show that no algorithm which is polynomial in Ixl

and k can exist. Much easier 15 to use the following defini

tions

DEFINITION 8. An NPCO problem A is strong~y simp~e if,
. c ( ) cI'" '" I I }g~ven any polynomial q,Aq ={ x,k EA m{x) ::,k::,m(x)+q{ x)

is decidable in polynomial time. A is weakLy rigid if there

exists a polynomial p such that A~ is NP-complete.

Since a p-simple problem is strongly simple, to show

that a problem is weakly rigid is a very easy method to

prove that a problem is not p-simple and therefore not fully

approximable. For example weakly rigid problems are MAX-CLIQUE,

MAX-SATISFIABILITY, MIN-CHROMATIC-NUMBER and the proof is

based on the fact that,for all these problems,for q(n) in

creasing more rapidly than n, AC
= AC

•
q
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This fact s~ggests an even easier condition that is

sufficient for a problem not to be fully approximableo

PROPOSITION 1. Let A Be an NPCO problemo If there
* '"exists a polynomial p such that for alI xEINPUTA,m (x)-m(.)<

< p ( Ix I) then A is not fully approximable.

apply Proposition 1, we may

is useful for showing that a

QED

MAX-CLIQUE and MIN-CHROMATIC

immediately applied. In fact in

stronger result that

is weakly rigido

prove a

problem

For some problp~s, like

NUMBER, Proposition 1 can be

these cases p ( Ix I) = Ix I o

In some other case, in order to

PROOF. In fact in order to be fully approximable, A

should satisfy the property that AC is recognizable in
p c c

polynomial time but, by hypothesis, we have that Ap =A

and, hence, A; is NP-completeo

THEOREM 10 Let A and B be two NPCO problems; if there

exists a reduction f = ( f 1 ' f 2 ) from A to B such that f

satisfies the following property: f2(x,k)~(lf1(x)I) for

50ue polynomial p and alI ;( E INPUTA ' k E QA ' then B is not

fully approximableo

PROOF. If B was fully approximable then for every

polynomial q we should have BC recognizable in polynomial
q c

time. lfi we now consider the set Bp if we could decide

within polynomial time whether, <;iven any pair <y, h > wi th

rtI(y) ~h~ilI(y) +p(lyl), h is the measure of an approximate

solution of y, then within polynomial time we could decide

AC
• In fact in order to decide AC in polynomial time, given

a pair <x,k> we could compute in polynomial time f 1 (x) and

f 2 (x,k) and since f 2 (x,k) ~p(lf1(x)l) we could use the de-
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cision procedure B~ tocheck whether f 2 (x,k) is the measure

of an approximate solution of f 1 (x).
QED

Note that in theorem 1 the condition on f 2 may regard

only a subset of B while in Proposition 1 ali inputs must

satisfy the hypothesis that (m*(x)-;lI(x» ~p(lx\l.

Furthermore Theorem 1 partially characterizes the

reductions between an arbitrary problem and a weakly rigid

one. For example if we consider the trivial reduction

(inclusion) from SIMPLE-MAX-CUT to MAX-CUT, we see that the

image of SIMPLE-~~-CUT is a subset of MAX-CUT where the

measure is bounded by the number of nodes of the graph

and this fact is sufficient to deduct that MAX-CUT is not

fully approximable.

In the following we will continue the study of the

characterization of reductions between problems belonging

to different classes, and we will show how some of the

considered properties can be inherited by polynomial reduc

tion, under some natural hypothesis.

THEOREM 2. Let A and B be two NPCO problems such that

A ~ B via the reduction f = <f 1 ,f2 > ; if A is rigid and if

there exists a monotonous function 9 such that for every

xEINPUTA ,kEQAi f 2 (x,k) ~g(k) then B is rigido

PROOF. If A is rigid there must be an integer k such

that

A: = {<x,k>l<x,k>EAc and ;lI(X)<k~;lI(x)+k}
-

i5 P-complete. By hypothesis, if we take k=g(k) then

B~ = {<y,h>l<y,h)EBC and til(y)~h<;lI(y)+g(k)~
k J
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contains f(A c ) and, hence if therewas a polynomial algo

rithm for B~k it could be used to decide A= in polynomial
- . k

time.ln factk in arder todecide whether (x,k) belongs to

A~ in the case k < k(otherwise we trivially know that (x,k)
k -

does not belong to A~), we rnay consider
k·

decide whether it belongs to B;.
k

RE~1ARK. Note tha t under the sarne condi tions i f A <B and B is

simple A must be simple.This result shows that no polynomial

reduction from a rigid problem to a simple problem is pos

sible unless the function f 2 is such that for no computable

function g it is true that for every x and every k

f 2 (x,k) .':-g(k). In other words f 2 (x,k) cannot be dependent

only on k but must eventually increase with respect to x.

Notice that theorem 2 strengthens another result given

in Paz and Moran (1977) where g is not an arbitrary rnono

tonous function but just a polynomial and the only considered

case is when f 2 (x,k) is equal to g(k).

When we pass frorn simple problerns to strongly simple

problems we obtain the following result.

THEOREM 3. Let A and B be two NPCO problerns and A < B

via the reduction f = ( f 1 ' f 2 ) . If there exists a polynomial
'V

t such that for ali xEINPUTA and kEQA f
2

(x,k)-m(f
1

(x») <

.':- t(lxl,k-~(x» then B strongly simple implies A strongly

simple.

PROOF. If B is strongly simple then for ali polynomials

p we know that the set B~ must be polynomially recognizable.

Now, let us consider any polynornial r and the set

A~ = {( x, k ) I( x, k ) E Ac and ~ (x) .':- k .':-~ (x) + r ( Ix l )}.

we shall show that A~ is polynornially decidable. In fact,
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given (x,k), if k > (;\(x) +r (Ix I)or if k 2{;\(X) we immediately

know that (x,k) does not belong to A
C

• On the other side,. .. r
if ;;; (x) 2 k 2;;; (x) +r ( Ix I) let us consider the following set:

f (A ~) ;= {( f 1 (x) , f 2 (x, k ' (x) +(;\(x) ) ) I( x, k • (x )+(;\ (x) ) E Ac and

02 k '(X)2 r (\X 1 )} ;

'"where k' (x) = k - m (x)

by hypothesisf(A~) is included in the set

S = {( y ,h ) I( y ,h ) E Bc and (;\ (y) 2h <(;\ (y) +t ( Ix I ,r ( Ix I) )}

Since we know that if AC and BC are NP-complete sets and

AC 2Bc via (f1 ,f
2

) then we must have Ix\ 2q( If
1

(x) I) for

every x and a polynomial q, then there must exist a poly

nomial r' such that

B~,={(y,h)l(y,h)EBCand (;\(y) 2h2{;\(y) +r' (Iy!) }'2 S.

So in order to decide whether (x,k) E A~ we may use the

reduction f and the polynomial algorithm that decides

whether (f1 (x),f2 (x,k» belongs to BC
,. Hence AC is also. r r

polynomially decidable.
QED

An interesting consequence of this fact is that, given

a problem A which is not strongly simple and a problem B

which is strongly simple any reduction from A to B must

violate the hypothesis.

This means that in a reduction between A and B the

measure must increase exponentially. If we.consider similar

reductions given by Karp (1972) (e.g. EXACT-COVER2KNAPSACK)

we notice that this is the case and by theorem 3 we may

argue that no "easier" reduction maybe found.

An analogous result holds in the case of p-simple

problems. First of all we prove the following lemma:
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LEM."'lA. Let A be (J.n NPCO problem If A is p-simple, then,

for every polynomial p, AC ={<x,k)l(x,k)E4 c i\;)l(;}<k<;)l(x) +p .....,. -
+ p ( Ix I )} i s recognil!:able in Q ( Ix I ,p (I x I» '<ihere Q is a

polynomial.

PROOF. Let A be p-simple. Given a polynomial p, we can

dec ide (x, k ) E Q~ in Q ( Ix I ,p ( Ix I) .
In fact if k > ;)l (x) + p( Ix I) or k < ;)l (x) , it is obvious that

(x,k) does not belong to A~. Differently, we can use the

followingalgorithmic procedure

1) compute k = p( Ixl)

2) decide H (x,k)EQ: in Q(lxl,k)
k

QED

The followingtheorem holds:

THEOREM 4. Under the same hypotheses of Theorem 3, B

p-simple implies A p-simple

PROOF. For every k we show that we can decide A: in
k

time polynomial in Ixl and k. In fact, given (x,k) , if

'" "'-m(x) ~k ~m(x}+k (the other cases are trivial), we consider

f (A~) which is included in the set S= {( y,h )I( y,h) E BC/\ri\(y) ~

~ h ~ ri\(y)+t(lxl ,k)}.

Furthermore if we consider the polynomial r(u,k)=t(q(u),k)

where t and q are as in thearem3, B~ cantains Sand, by

the lemma, B~ is decidable in time Q(IYI,r(IYI,k». Using

the reduction f and the praperty af B~ we may decide whether

(x,k) E A': within time
k

Q( If 1 (x) I , t (q ( If 1 (x) I) ,k) ) =Q (p ( Ix I ) , t (q (p ( Ix I) ) ,k) )

(due to the palynamiality af the reduction f) what means that
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the decision time is bounded by a polynQmcal in IX\ and k.

QEO

Since no eJçample is known of a problem which is strongly

simple andnot p-simple no application of theorem 4 can be

provided which is different from the application given at the

end of theorem 3.

As a conclusion of this paragraph we may observe that

the results provided insofar have a twofold implication. Qn

one side they can be used in order to characterize the com

putational complexity of one problem with respect to the

given definitions, on the other side they establish condi

tions on the type of reductions that can be found among

problems belonging to different classes, such as those

discussed at the end of theorem 2 and theorem 3. As a fur

ther example we may observe that in the case of the reduc

tion from PARTITION to HAX-CUT the existence of a much more

succint reduction than the one given by Karp is ensured by

noting that the first problem is strongly simple while the

second is weakly rigido

4. STRONG NP-COMPLETENESS ANO ITS RELATION TO RIGIOITY

In the preceding paragraph we have seen that in some

cases the characterization of a problem B that is not fully

approximable comes out of the fact that we can reduce an

NP-complete combinatorial problem A
C into a subset of B

C in

which the measure is bounded by a polynomial.Garey and

Johnson give another way of considering subsets of the set

INPUT of a problem to study the different characteristics of

NPCO problems. Their paper (1978) is an attempt to understand

the different roles that numbers play in NPCO problems. Let
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us first consider, for exarnple, the problem MAX-CUT that is a

well-known N~CO problem; If we restrict to those graphs

with unitary weights we obtain a s~mingly easier problem

SIMPLE-~iAX-CUT, that, .. however, is stillan NPCO problem.

Different is the case of the problem JOB-SEQUENCING-WITH-

DEADLINES: it has been shown to be NP-complete by Karp,

but if we restrict to the case when alI weights are unitary

then the problem is solvable in O (n 19 n). Moreover if the

weights are at most k the problem is solvable by a classic

dynamic approach in time bounded by a polynomial in k and

in n (the number of jobs). Note that a polynomial algorithm

must solve JOB-SEQUENCING-WITH-DEADLINES in time bounded by

a polynomial in n and in 19 k.

In order to formalize these observations Garey and

Johnson introduce another function of the input MAX: INPUT ->- z+
that captures the notion of the magnitude of the largest

number occurring in the input. For example given a weighted

graph G, MAX(G) can be defined as the value of the maximum

weighted edge. The following definitions formalize these

concepts.

DEFINITION 8. A pseudo-polynomial algorithm is an

algorithm that on input x runs in time bounded by a poly

nomial in Ixl and in MAX(x).

DEFINITION 9. An NPCO problem is a pseudopolynomial

NPCO problem if there is a pseudopolynomial algorithm that

solves it.

DEFINITION 10.

problem obtained by

in INPUTq for which

Given a problem P let

restricting P to only

MAX(x) ~ q(lxl)

P denote the
q

those instances x
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DEFINITION 11. An NPCO problem P is NP-compZete in the

stl'ong sens·e if there exists.a polynomial q such that Pq is

NP-complete.

An example of pseudopolynomial NPCO problem is JOB

SEQUENCING-WITH-DEADLINES (Lawler and Hoore (1969» while

MAX-CUT is NP-complete in the strong sense (it is sufficient

to consider the costant polynomial q{x) = 1 to obtain

SIMPLE-HAX-CUT) .

The two classes of pseudopolynomial NPCO problems and

of strong NP-complete problems are disjoint (obviously unless

p = NP). The following proposition states the relationship

betweenstrong NP-completeness and full approximability.

PROPOSITION2. If P is NP-complete in the strong sense

then it is not fully approximable.

Garey and Johnson give another result that connects the two

concepts of pseudopolynomial and fully approximable NPCO

problemi for clarity sake, we will give it later as an im

mediate consequence of Theorem 6.

In many problems the optimal value of the measure and the

HAX of the input have the same size or it is possible to

establish a polynomial relation between th6n. This suggests

the idea of comparing some of the different concepts in~

troduced in the preceding paragraphs and in this one. First

of all we can prove the following.

FACT 1. Let A be a pseudopolynomial optimization pro

blem. If there exists a polynomial q such that for every

xEINPUTA ;·lAX{x) ~q(m*{x)-ri\(X), Ix1), then giv;n (x,k), it

is possible to decide in polynomidl time if m (xl ~ k or

*m (x) > k.
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PROOF. The hypotheses imp~y that there exists a poly-. ... . *
nomial p such that, given x;'rn (x) ·is computable within

time p(!x·I,'MAX(X)) and, therefore, within time p(lxl,

q ( (m* (x) -iii (x) ), Ix I) ) . We apply the pseudopolynomial algo

rithm to x for p( Ixl ,q(k, Ix/) steps. If the algorithm stops,

* *it is decidableif m (x) ~ k or m (x) > k; instead if the

algorithm does not terminate in p(jx\,q(k,lxl)), then

*m (x) > k

QED

As all known pseudopolynomiàl algorithms make us of

dynamic programming, it is possible, very often, to state

fact 1 in a more interesting way.

FACT 2. Let A be a pseudopolynomial optimization pro

blem. If there exists a polynomial q such that for, every
. * ~ Ix E INPUTA ' MAX (x) ~ q (m (x) -m (x) , Ix ), then A is p-simple.

THEOREM 5. Let A be a p-simple problem. If there

exists a polynomial q such that., for every x E INPUTA '

(m*(x)-iil(x)) ~ q(MAX(x), Ixl), then A is a pseudopolynomial

NPCO problem.

PROOF. By the hypothesis for

zable in time Q( Ix I , k). To obtain

lowing algorithm:

for k : = O to q(MAX(x),lxl)

repeat the following step:

h k A
c . .

eac k ~s recogn~-

*m (x) we can use the fol

c * ~if (x,k)EA
k

then m (x) =m(x) +k
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By hypothesis there are no more than q(Max(x),jxl)+1 itera

tions of steps 2. As A
C

i's p-simple, each iteration of

step 2 takes no more,than Q(lxl,q(HAX(X),jxl)+1). 'Therefore
'lo'

m (x) is computable in at most(q(MAx(x),lxj)+1)·Q(lxi,

q (tlAX (x) , Ix I ) ) . QED

COROLLARY. (Garey and Johnson (197d». Let A be a fully

approximable NPCO problem. If there exists a polynomial q
'lo '"such that for every x E INPUT

A
(m (x) -m (x) ).::.q (MAX (x) , Ix I)

then A is a pseudopolynomial NPCO problem.

PROOF. Immediate from the previous theorem and the fact

that a fully approximable problem is p-simple. QED

As the condi tions of theorem 5 and Fact 1 are generally

verified the two concepts of pseudopolynomial problem and

p-simple problem coincide in many cases.

A natural question arises at this point: when the con

ditions of the theorems are not verified which of ,the two

approaches gives a better information about the complexity

of approximate algorithms?

Let us define

(P1 )
n

Max L
j=1

c.y.
J J

n
subject to L

j=1
a.y. =b

J J
j=1,2, ... n

A natural definition of MAX(INPUTp1 ) can be the following

MAX(x) =max(c.,a.) and it is not hard to prove that P1 is
j J J

pseudopolynomial (a classic dynamic approach solves it in

O(n 2 MAX(x»); however even the problem to obtain any ap

proximate solution is an NP-complete problem (Karp (1972».

Therefore P1 is a pseudopolynomial NPCO problem that is not
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approximable.

Let us consider now:

(P2)
n y.

TTc. J
j=1 J .

subject
n y.

to TTa.J ~b ,
j=1 J

j=1,2, .•• n

This problem is fully approximable and we conjecture

that it is not a pseudopolynomial problem because the clas

sical method of deriving a pseudopolynomial algorithm from

the dynamic programming approach does not work. Theorems 5

and 6 and the previous examples show that Paz and Moran's

approach has a wider application for two different reasons.

First their approach is straightforward and there is no need

to introduce the function MAX whose definition can be

ambiguous in some cases.

In addition we have proven that the two approaches are

equivalent under restricted but reasonable hypotheses and we

*have shown that when m (x) and MAX(x) are not polynomially

related the approach formulated by Paz and Moran remains

adequate to study the complexity of approximation schemes

for NPCO problems.

Before finishing this paragraph we want to observe that,

when there is a polynomial relation between the value of the

optimal solution and the value of MAX , there is a strong

connection between the two concepts of strong NP-complete

and weakly rigido

THEOREM 6. Let A be a strong NP~complete optimization

problem. If there exists a :Jo1ynomial p such that for every

* '"x E INPUTA (m (x)-m(x))~(MAX(X), Ixl) then A is weakly

rigid.
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PROOF. If A is NP-complete in the strong sense there

must exist a polynomial q such that the following set

Q = {( x,k) I( x,k) EA
c

, MAX:(x) ~q( Ix-I)} is NP-complete.

Let us consider now the set

c Il''' '"Q' = {(x,k)\(x,k)EA ,MAX:(x)<q( x ),m(x)~k<m(x)+p(MAX:(x),lxl)}

As Q 2 Q' in order to prove that Q =: Q' it is sufficient to

prove that

Q-Q' =: (< x, k ) I( x, k ) E Ac, MAX: (x) <q ( Ix I), k >;;) (x) + p (MAX: (x) , Ix I ) }

is the empty set. In fact given (x,k), with k>~(x)+p(MAX:(X),
'" - *Ixl), we have by hypothesis k>m(x}+p(MAX:(x),!x!»m (x) and

therefore (x,k ) ~ A
C

• Let us consider now

Q" = {(x,k)l(x,k)EA c , ;;)(x)~k<;;)(x)+p(q(lxl, Ixl)}

Clearly Q" is NP-complete and hence A is weakly rigido

QED

5. CONCLUSIONS

In this paper we have shown that there exist close

relations among different approaches to the classification

of NP-complete optimization problems, giving also new results

on the type of possible reductions among problems belonging

to different classes. On the other side, it was prove n that,

violating some conditions, comparisons among different

concepts do not hold any more.

Therefore we believe that, in the whole, our results

are a useful contribution for a better understanding of

properties of NPCO problems. We think that in order to

provide meaningful characterizations of NOCO problems it is

necessary to find the suitable level of abstraction because
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if a too general point of view is taken NPCOproblems appear

to be hardly distinguishable while if too many details are

taken into consideration itis difficult to grasp simila

rities among different problems. The results stated in this

paper are, as we feel,at the right level. For the same reason

we would like to broaden our considerations and results to

other approaches which stanj at the same level of abstraction.

In Ausiello, D'Atri, Protasi (1977) a distinction was in

troduced between convex and non convex problems (a problem

is said to be convex if, for every integer k between the

worst and the bes t solution, there is, at least, an appro

ximate solutionof measure k). It is interesting to observe

that many examples show that the property of being non con

vex is related to the approximation properties of the pro

blems.
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