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DUALITY THEOREMS FOR REGULAR HOMOTOPY

OF FINITE DIRECTED GRAPHS., (*)

RIASSUNTO. - Dati uno spazio topologico mormale e numerabilmente
paracompatto S ed un grafo finito ed orientato G ai prova che tra
gli insiemi Q(S,G) e Q'CS,G) delle eclassi di o-omotopia e d7
o *-omotopia esiste una biiezione naturale. Nelle stesse condiziont,
se S' é un sottospazio chiuso di S e G' uwm sottografo di G, esiste
ancora una biiezione naturale tra gli imnstiemi Q(S,S':6,G') e
Q*(S5,8"'"3G,G') delle classi di omotopia. S7i mostra infine che in con
dizioni meno restrittive per lo spazio S le precedenti biieziont

possono non sussistere.
INTRODUCTTION

in the extension from the undirected graphs to the directed ones, we have two
possible definitions of regular function, In fact, given a topological space S
and a finite directed graph G, a function f: § = G is called o-regular (resp.
o*~regular) if for all v,w € ¢ such that v # w and v # w, it is };3?;7 N frj(w)
= ¢ (resp. frI(v) P';;??;; = ¢). Therefore we can deal with two different

homotopies, the o~homotopy and the o*-homotopy. Hence we examine the problem

(") Work performed under the auspices of the Consiglio Nazionale delle Ricerehe
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of seeing if, under suitable conditions for the space S, the o-homotopy and
the o~homotopy get to coincide necessarily, i.e. if there exists a natural
bijection between the sets of homotopy classes §(5,6) and 8*(5,G6). As we
observed in {2 1, by the Duality Principle the o~homotopy and o”-homotopy are
interchanged by replacing the graph G by the dually directed graph G*; thus
we can identify the four sets @(S,G), &"(5,G), Q(S,G'); 0*(5,6%) at the

.
a
Same Cime.

Briefly we show how to solve the foregoing statements. In Part one , at first,
we just consider functions and homotopies that are completely regular, i.e.
without singularities; hence we examine the sets of complete o~homotopy classes
QC(S,G) and the ones of complete o*~homotopy classes Q;(S,G). Then we obtain
some properties which characterize the regular and completely regular functions
(5§ 1) and we give the definition of patterm, by which we construct a relation
from the set of completely o-regular functions to the one of completely
o"~regular functions. Consequently, we have (§ 3) the Duality Theorem for
complete hcmotopy classes (Theorem 9): "There exists a natural bijection between
the sets of complete homotopy classes QC(S,G) and Q;(S,G)".
Now we recall the results obtained in [ 3], Theorems 12, 12%, 16, 16":
i) If the space S is normal (*), in every class of @(5,G) (resp. Q*(5,G)) there
exists a completely o-regular (resp. o"-regular) function.
ii) If §xI is normal, two completely o-regular (resp. coempletelv o”-regular)
functions, which are homotopic, are also completely homotopic.
Hence it follows (§ &) that if § and SxI:are normal spaces, there exists a
natural bijection from chS,G) to @(S,G}) and from Q;(S,G) to §°(S,G). From here
and Theorem 9 the Duality Theorem follows. Now if we recall that a normal space

S such that the procuct SxI is normal, is said a eountebly paracompact normal

T . N ) , o c .
(") We distinguish between normal space and TH“SDaCe, according to whether it is

a Tz-space or not.



space (see [12]y, DPp.168-169) we can enunciate the Duality Theorem (Theorem
11): "If S Zs a countably paracompact normal space, then there exists a natural

bijection from Q(S,G) to Q*(S,G)".

In Part two we consider the same problem for couples of topological spaces
(5,8') and of directed graphs (G,G'). That is not a trivial generalization of
Part one, because new difficulties rise. In general, indeed, we cannot construct
patterns of completely o-regular functions, then we must add the further

condition that the completely regular functions are balanced in S' as regards S

(8 5), i.e. such that for all z' € S’y for all v € G, ' € frl(v) implies that

x' € frz(v) N 8" . Thus we can repeat the construction of patterns (§ 6).

A second difficulty rises in that the so constructed patterns are not in general
balanced functions. Hence we must choose as subspace S' an open subspace (£ 7)
and under this condition the duality for complete homotopy is solved.
Unfortunately we carnot deduce the Duality Theorem since the Normalization
Theorems proved in [ 3] for § and SxI normal spaces hold only if S’ is a closed
set. We eliminate this last difficulty (§ 8,9) by considering the decreasingly fil
trated set of open subspaces including S' and the induetive 1imit of the functions
balanced in any open neighbourhood of S’. Thus by proceeding as in Part one

we obtain the Duality Theorem (Theorem 32): "If S is a countably paracompact
normal space and S' a closed subspace of S, then there exists a natural bijection
from the set of o-homotopy classes Q(S,S':G,G') to the one of o*-homotopy

elagses (*(S,S':G,G') ",

In £ 11 we gereralize the Duality Theorem to the case of (n+l)-tuples of
topological spaces and of (n+l)-tuples of graphs. In § 12 we obtain the Duality
Theorem for absolute and relative homotopy groups and we prove that the natural
bijections are isomorphisms. At last in & 13 we give some counterexamples and
among these we remark 13.4 and i3.5 which show that under weaker conditions
for the space S5 (quasi compact, 7o but not TI) the two Dualitv Theorems do not

hold.



0) Background.

Graphs and their subsets. (See [2] § 1, (3] § 1),

let G be a finite directed graph.
If v, w are two vertices of G, we use the symbol v = w (resp. v # w) to denote
that vw is (resp. is not) a directed edge of G. If v » w, we call v a predecessor
of w and w a sucecessor of v,

The graph G* with the same vertices of G and such that (u = v in G) ¢ (v > u

in 6*), is called the dually directed graph as regards G. (If G = G*

, i.e. 1f for
all v,w € G we have (v > w) ® (w = v), the graph is called undirected).

Let X be a non-empty subset of G. A vertex of X is called a head (resp. a
tazl) of X in G, if it is a predecessor (resp. a successor) of all the other
vertices of X. We denote bv HG(X) (resp. TG(Y)) or, simply, bv #(¥) (resp. T(X))
the set of the heads (resp. tails) of X in G. If H(X) # ¢ (vesp. T(X) # ), X is
called headed (resp. tailed):; otherwise, X is called nom—headed (resp. non-tailed)
Finally, X is called totally headed (resp. totally tailed), if all the non-empty
subsets of ¥ are headed (resp. tailed). If X is a singleton, we agree to say that

X is headed.
Regular and completely regular functions. (See [21§ 1,/ 3] § 2).

Let S be a topologiecal space.
Given a function f: S+ G from S to G, we denote by capital letter V the set of
all the f-counterimages of v € G, and if we want to emphasize the function f, we
write v = £ l(w).

A function f: § = G is called o-regular (resp. o"-regular), if for all v,w € G
such that v #w and v # w, it is VN W =06 (resp VN W = ¢).

let T =[0,11 be the unit interval in Rl. Two o-regular (resp. o*-regular)
functions f,g: S > G are called o-homotopic {resp. c¢"-homotopie), if there exists
an o-regular (resp. o"-regular) function F: SxI - (¢, such that F(z,0) = f(x) and

F(x,1) = g(x), for all x € S. The o-regular (resp. o"-regular) function F is



called an o-homotopy (resp. o*~homotopy) between ¥ and g. The o-homotopv (resp.
o*~homotopy) is an equivalence relation and we denote bv 9(S,G) (resp. §*(5,G))
the set of o-homotopy (resp. of-homotopy) classes. We note that 9*(S,0) coincides

with @(5,G*) and @%(S,G") with Q(S,G).

DUALITY PRINCIPLE. - Every true proposition in which appear the concepts of
headed set, tailed set, o-regularitu, o"-regularity, o-homotopy, o*-homotopy,
Q(S,G), Q%(S,0), remains true if the concepts of headed set and tailed set,
o-regularity and o*-regularity, o~homotopy and o*-homotopy, 0(S,G) and Q*(S,G),

are interchanged throught the statement of the propositionm.

Given an o-regular (resp. o*-regular) function f: S = G, a n~tuple X = {vl,...,

v}y, (»»2) is called a singularity of f if:
n
1) X is non-headed (resp. non-tailed):
i ni fe.
1 n

An o-regular (resp. o*-regular) function f: S = G from S to G is called
completely o-regular (resp. completely o*-regular), or simply c.o-regqular (resp.
c.o'-regular), if there are no singularities of f. (If the graph G is undirected,
then all the singularities are couples and the c.regular functions are called

strongly regular functions).
Functions between pairs. (See [ 2] 85,[ 31 §2).

let 8’ be a subspace of S and &' a subgraph of 4.
A function f: 5,8’ = G,G' is called o-regular (resp. o*-regular) if both f: § = G
and its restriction f' = ﬂﬁ{g,: 5! =+ G' are o-regular (resp. o*-regular)
functions.

Two o-regular (resp. o"-regular) functions f,g: S,S' = G,G' are called o~homo-
topte (resp. o*-homotopic), if there exists an o-regular (resp. o"-~-regular)
homotopy F: SxI, S$'xI - G,G', between f and g. The o-homotopy (resp. o -homotopy)

is an equivalence relation and we denote hy Q(5,5';G,G') (resp. @ (5,5';G,G')) the



set of o-homotopy (resp. o*=homotopy) classes. We note that Q*(S,S':G,G')
coincides with Q(S,S',G*, G'*) and Q(S,S';G,6') with Q*(S,S':6*,G'™).

A function f: S5,8' = G,G' is called e.o-regular (resp. e.o*-regular) if both
f+ 8> G and f': §' » G' are c.o-regular (resp. c.o*-regular) functions.

As before, the Duality Principle holds for functions between pairs.
Main results of [ 2], [3].

Ra: X C G <s totally headed, iff it is totally tailed. (See I 3] ,Proposition 4).

If S is a normal topological space and S' is a closed subspace of S, we have:

R.: (The first Normalization Thzorem). Let f: S = G (resp. f: S,8'" = G,G') be
an o-regular function. Then there exists a c.o-regular function, o-homotopic to

f. (See [ 3], Theorems 12, 15).

RC: (Extension Theorem between pairs). Let f: S,S' = G,G' be an o-regular function.
Then there exist a eclosed neighbourhood U of S' and an o-regular function g: S,S'
> G,G', which is o-homotopie to f and such that the funetion g: S,U - G,G' is
o-regular, t.e. g(U) C G' and the restriction g: U~ G' of g to U Zs o-regular.

(See [ 21 , Theorem 20).

Rd:In the construction of Rc’ 1f there exist n vertices D

19+ 50 € G and m verti
' T F _FT T .
ol n N N N -
ces ql"Lqum € G ,_f?ch“fﬁat P1 R Pn Q1 n ... Om;_ b, then_f?so 1t
5 : : F F
£, N...nPPNno8n...Nn0o5 = ¢. ; AL..NnP P AYx =
Follows P% . P}% Q5 0% = 6. Similarly, from P P NYX=o

it results P% AL N Pﬁ N1 =6, (See 2], Corollary 21).
Moreover, if SxI is normal, then it results:

Re: (The first Normalization Theorem for homotovies). Let f,g: S = G (resp. f,g:
S,38' = G,G") be two o-homotopic c.o-regular fumctions. Then, between the funetions
f and g, there also exists an o-homotopy, which is a e.o-regular function. (See [ 31,

Theorem 16).

By Duality Principle, the results dual to the previous ones are also true.



r#ART ONE. DUALITY THEOREM FOR REGULAR FUNCTIONS.

for brevity, we omit the statements of dual propositions, but if we must refer

to them, we denote them by *,

1) Properties of regular and completely regular functionms.

DEFINITION 1.~ Let S be a topological space, X a point of S, G a finite directed
graph and f: S - G a funetion from S to G. We call image-envelope of x by f, and
we denote by <f(x)>, the set of vertices, such that the closures of their f-counter

—

images include the point, Z.e. v € <f(x)>® x € V",

PROPOSITION 1. =~ Let S be a topological space, x a point of S, G a finite
directed graph and £: S > G a function from S to G. Then the tmage—envelope of X
coincides with the intersection of the images of the neighbourhoods of x, <.e.
<f(x)> = ﬂ{f(l,lx) / U, 18 a netghbourhhod of x}.

Proof.- v € <f(x)> e mGVf (VU

U v 26) « (v v, vEFU)) -

€ NfY( . ®
) flUx)

PROPOSITION 2. - Let S be a topological space, G a finite directed gravh and
f: § = G a funetion from S to C. Then f is an o-regular funetion, iff, for all

x € S, f{x) 78 a head of <f(x)>, 1.e. f(x) € B(E(x)>).,

Proof. = 1) Let f be an o-regular function, = a point of S, and v = f(z). Then,

for all w € <f(x)>, i.e. x € ;fﬁ, we have Vf a ;F Zdé, Hence v ~w, i.e. v €
H(<f(z)>),

ii) For all = € 5, let f(x) € H(<f(x)>) be. We have to prove that, for all v,w €
G, such that v # w and v # v, it results that Vf Al _WJ? = ¢, If we assume x € V‘# n

Wf, it follows flx) = v, v € A(<(f(x)>) and v € <Ff(x)>, hence v - w. Contradiction.®



PROPOSITION 3. - Let S be a topological space, G a finite directed graph and
f: S G a function from S to G. Then f ig a e.o-regular function, 1ff, for all
X €S, 1t 1s:
1) f(x) 18 a head of <f(x)>, Z.e. f(x) € H(<F(x)>);

117) <f(x)> s a totally headed subset of G.

Proof. = Bv Proposition 2, we have only to prove that an o-regular function

is c.o-regular iff ii) is true.

Then let f be a c.o-regular function. Since each subset Y = {vl,.. .,vn} of
<f(x)> such that V{ nL,.. N V;: # 6 can not be a singularity of f, X must be

headed.
Conversely, let <f(x)> be totallv headed for all x € S. Then if we assume that

. . . . . f f
X = {vl,...,vn} is a singularity of f, there exists a point x € CARTENA T/;Q.

Hence the non-headed subset ¥ is included in <f(x)>. Contradiction. ®

REMARK. - Consequently, Zf G s an undirected graph, a funetion £:2 - C 1s
strongly regular i.e. c.regular 1ff, for all x € S, <f(x)> is a totally headed
subset of G. In this case, indeed, we have that "<f(x)> totally headed" is

equivalent to H(<f(x)>) = <f(x)>.

2) Patterms of a funetion.

DEFINITION 2. ~ Let f: S = G be a funetion from a topological space S to a
finite directed graph G. A funetion g: S - C 1is called an o-pattern {(resp. o"~
vattern) of f, Zf, for all x € S, 7t holds g(x) € H(<(f(x)>) (resp. g(x) €

T(<E(x)>) 1.

REMARK. - In general there is no pattern of a given function, because the sets

<f(x)> may be non-headed for some x € 8.



DEFINITION 3. = A funetion f: S = G from a topological space S to a finite
directed graph G 18 called quasi o-regular (resp. quasi o"-regular), or simply
g.o-regular (resp. q.0"-regular) <f the image—envelope <f(x)> Zs headed (resp.
tatled) for all x € S,

Moreover, the function f is called completely aquasi regular, or sitmply c.qa.

regular, 7f <f(x)> is totally headed.

REMARK 1. - Consequently, if 6 is an undirected graph, a a. regular function
is also regular and a c.q.regular function is also completely regular, i.e.

strongly regular.

REMARK 2. - We consider only c.q.regular functions, since by R, each c.q.o~

regular function is also c.q.o"-regular.

PROPOSITION U4, = An o-regular function is q.o-regular. A c.o-regular function

18 e.q.regular.

Proof. - It follows from Propositions 2, 3. ®

PROPOSITION S. = 4 funetion f: S = G Zs g.o-regular iff there exists an o-

pattern of f.

Proof. - i) Let g be an o-pattern of f. Since, for all z € S, g(x) € H(<f(x)>),
<f(x)> 1is headed.
ii) Let <f(z)> be headed. In order to construct an o-pattern g of f, we number
the vertices of the finite graph ¢ by Vyseees? Then, for all x € 5, we choose

as gfx) the vertex with the lowest index among the vertices of A(<f(x)>). B

REMARK, - We note that a c.g.regular function is g.o-regular and q.0"-regular.

Hence, there exist both o-patterns and o®-patterns for a c.q-regular function.



10
PROPOSITION 6. - Let f: S = G be a g.o-regular funetion. Then:
1) all 1its o-patterns are o-regular funetions;

11) two o-patterns of f are o~homotopie to each other.

Proof. - 1) Let g: S = G be an o-pattern of f. At first, we prove that W c
Vf, for each v € G. We have, indeed, =z € # = glx) = v = v E€Lflx)> = x € Vf.
Hence it results W < Vf and also ¥ c V‘F. Consequently, <g(x)> C <f(x)>, for
all x € S, Now, since g(x) is a head of <f(x)>, it is also a head of <g(xz)>. Then,
by Proposition 2, g is an o-regular function.

ii) Let g,h be two o-patterns of f. The function F: $xI = G, given bv:
| g(x) for ¢=0
Flxz,t) =
h(zx) ¥t € 10,11,
is a homotopy between g and k. Besides, for all (x,t) € SxI, it is:
<g(x2)> U <h(x)> C <f(x)> for t =0,
<Flx,t)> =
<h(x)> vt e [0,1].

Then, since g(x) and h(x) are heads of <f(x)>, they are also, respectively, a head

of <g(x)> U <h(x)> and a head of <h(x)>. Consequently, F is an o-regular function.

DEFINITION 4. - Let S be a topological space and G a finite directed graph. Two
e.o-regular (resp. c.o*-regular) functions f,g: 3 > G are called completely o-homo-
topic (resp. completely o"-homotopic) or simply c.o-homotopic (resp. c.o®-homotopic)
1f there exists a homotopy T between f and g, which is a e.o-regular (resp. c.o'~
regular) funetion. T is ealled a complete o-homotopy (resp. complete o*-homotopy),

or simply a c.o~homotopy (resp. c.o*-homotopy).

PROPOSITION 7. - Let £: S = G be a e.q.regular funetion. Then:
t) all its o-patterms are c.o-regular funetions:

17) any two o-patterns of f are c.o-homotopie to each othenr.

Proof. = i) Like in Proposition 6, we prove that <g(z)> C <f(z)>, for all = € S.

Consequently, since <f(xz)> is totally headed, also <g(z)> is totallv headed.



Hence, by i) of Proposition 6 and by Proposition 3, g is c.o-regular.

ii) We define the homotopy like in Proposition 6. Since, ¥ x € S, f(z) is
totally headed, the subsets <g(x)> U <h(x)> and <h(z)> are also totally headed.
Hence, ¥ (x,t) € SxI, F(x,t) is totallv headed and so is a c¢.o-homotopy between

g and h, by Proposition 3. W

3) Duality Theorem for complete homotopy classes.

We see it is possible to construct homotopy classes, by considering only c.

regular functions and c.regular homotopies.

PROPOSITION 8. = The c.o-homotopy 18 an equivalence relation in the set of

e.o-regular functions from S to G.

Proof. - The relation obviously satisfies the reflexive and symmetric proper-
ties. (See [ 2], Remark to Definition 5). Also the transitive oroverty is true.
In fact, let F (resp. J) be a c. o-homotopy between the c. o-regular functions f

and g (resp. g and k). Then the function KX: SxI =+ G, given bvy:

P(z, 3t) ¥resg, V¥te [O,%:l
K(z,t) = { gz) Vzes, vtel[xd
J(z, 3t-2) vres, vee(Ll ,

is an o-homotopy between f and k.

We have to prove that k is a c.o-regular function. Let us assume that the image-
envelope of the point (x,t) is non-totallv headed. Then, if ¢t < %3 also the image-
envelope of (x,3%) is non-totally headed for the function F. If t > %3 also the
image-envelope of (x,3t~2) is non-totally headed for the function J. If %-< t < %3
also the image-envelope of the point x is non-totally headed for the function g.

Anyhow, we obtain a non-totally headed image-envelope for a c.o-regular function.

This contradicts to Proposition 3. @
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REMARK. - By considering as homotopy between f and g that given by the sum (see

[ 2], Remark to Defintion 5), we obtain only an o-regular function, in general.

DEFINITION 5. - Let S be a topological space and G a finite direeted graph. We de

note by QC(S,G) (resp. O;(S,G)) the set of c.o-homotopy (resp. c.o'-homotopy) classes.
REMARK. - We note that Q;(S, G) coincides with @ (5, '), and Q; (s,G*) with Q,(5,6).

THEOREM 9, - Let S be a topological space and G a finite directed graph. Then
there exists a natural bijection from the set of complete o-homotopv classes O_C(S,G)

to the one of complete o'-homotopy classes O;(S,G).

Proof. - Ve derote by F (S,G) (resp. F;(S, G)) the set of all the c.o-regular
(resp. c.o'-regular) functions. We define a relation ¢: FG(S,GJ - F;(S,G) which
sends each f € Fc (5,6) in any its o"-pattern ¢(f) and similarly a relation w: F';(S, G)

> F (5,G) which sends each h € F;(S, G) in any its o-pattern y(h).

i) ¢ induces a function ¢ from QC(S,G) to Q;(S,G).
By the Remark to Proposition 5 and by 1) of Proposition 7 the relation ¢ is defined
on all the set Fc( 8,G) and by ii) of Proposition 7 every o°-pattern of f is o'—homg)_
topic to ¢(f). Then we define a function ¢: F;(S, G) > Q,(5,6) by putting:

VFEF (56, 9(f)= {e(f)}.
Now let g be a function c.o-homotopic to f by the homotopy H, and let ¢(g) be an

o'-pattern of g. We construct the c.o-homotony:

 flx) 0<t< %,

o 1 2

Flx,t) = 4 H(x,3t-1) F<t<5
glzx) %—g t < 1.

-~

let 7 be an o -pattern of F, it follows from Proposition 7 that 7 is a c.o"-homotooy
between the restrictions f = F/Sx{O} and g = F/Sx{l}' Since f = F/Sx{O} and H does

not interfere in the construction of f‘, 2- is an o"-mattern of #. Similarly, § is an o'~
pattern of g. Then by Proposition 7% ¢(f) and f’ are c.o'-homo‘topic, and the same

happens for $(f) and g. For the relation is transitive, ¢(f) is c.o"-homotooic to #(g).
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Since the function ¢ is compatible with the c.o-homotopy relation in Fa(S,G), ¢
induces a function ¢ from Q,(8,6) to Q;(S,G) given by:

¥a€ QC(S,G), o(a) = {¢(f)}, where f is a representative of a.

ii) ¢ induces a function ¥ from Q;(S,G) to @(5,6).
By dual arguments we can prove that the required function ¥ is individualized by
putting:

¥RE Q;(S,G), v(g) = {uv(h)}, where » is a reoresentative of 8.

1ii) ¢ and ¥ are bijective functions.

We have only to prove that ¥é is the identity in QC(S,G) and ®¥ the one in Q;(S,G).
let o be a class of Qc(S,G) and f € a a c.o-regular function. We have &(a) = {4(f)},
and, successively, ¥o¢(a) = {yé6(f)}. Ve observe that the function vé¢(f) is c.o-
regular by Provositions 7, 7°. Following i) of the proof of Proposition 6, it

F) . F e
results, ¥ v € G, Vw¢(fj S_V¢(') C 7, then like ii) of the same oroof, we can

construct & c.o-homotopy between f and wé(f). Conseauentlv, ¥&(a) = {vé(Ff)} = {f} =

a. Similarly, it results, ¥ 8 € Q;(S,G), s¥(R) = R, W

4) Duality theorem for homotopy classes.

By the two Normalization Theorems R, s Pe, the duality can be extended to the

homotopy classes Q(S,G) and Q°(S,G).

PROPOSTTION 10. - Let SxI be a normal topological space and G a finite directed
graph. Then there exists a natural hijection from the set of c.o-homotorv classes

QC(S,G) to the one of o~homotopy classes 0(S,0).

Proof. - let F(5,G) and FC(S,G) be the sets of o-regular and c.o-regular func-
tions from S to ¢ and 7: F (8,G) > F(5,G) the identical embedding. Obviously, J
is compatible with the c.o-homotopv relation in FC(S,G) and with the o-homotooy
relation in F(S,G), hence j induces a function J Ffrom QCKS,G) to §(S,5). Moreover,

J 1s onto by R,, and it is one to one bv R L
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Finallv, by Propositions 10, 10* and Theorem 9 we obtain:
THEOREM 11. - Let S be a ecountahly paracormaet normal space and G a finite
direeted gravh. Then there exists a natural hiiection from the set of o-homotony

classes N(S,B) to the ome of o'-homotopu classes 0*(3,C).

Proof. In fact the assumption on ¢ is eguivalent to suppose that ¢ and Sx7 are

normal spaces. (See Introduction)., B

PEMARK 1. - In general the previous result does not hold for anv tomological

space. (See Fxample 13.5).

REMARK 2. - In the foregoing conditions it follows that the sets @(S,G), §(S,G"),

Q*(s,¢), 9*(s,7") can be identified.

PART TWO, DUALITY THEOREM FOR REGITAR FUNCTIONS RETWEEN PATPS,

&) Balanced funetions.

Ye can characterize the regular functions between pairs, similarlv to Propo-

sitions 2, 3, bv the following:

PROPOSITION 12, - Let f: S,8' = G,G' he a funetion from a vair of tovological
spaces S,S' to a pair of finite directed granhs C,G" and f': €' > Q' the vestric-
tion of £1 S = G to S, Then f 18 an o-rvegular funetion, iff £(x) is a head of
<E(X)> in G, for all x € S; while £'(x) 75 a head of <F'(x)> in 7', for gll x € ',
Moreover, f is e, o-reqular, Iff also the subsets “f(x)> are totally headed 7n G

and all the subsets <f'(x)> are totallu headed in G', @

REMARY, - Consequently, ©f G 78 an undirected grapk, a funetion f: S,°' » Q!
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18 strongly regular, iff <f(x)> <s totallu headed in G for all x € S, and so

ig <f'(xX)> in @' for all x € 8",

Unfortunately the considerations develoved in Part one in order to obtain the
Duality Theorem for regular functions can not be directly generalized to regular
functions between pairs, since there does not exist an o-pattern of anv c.o-reg
ular function f: 5,5’ - G,G’ in general. Hence we must add the following new
condition:

TG(<f‘(x')>) N TG,(<f’(x’)>) Z 6, Yx'€ g’

and consequently we put:

DEFINITION 6. - Let f: S,S' = G,C' be a funetion from a pvair of tovologieal
spaces £,S' to a pair of finite dirvected graph G,R' and let f': ' = Q' be the
restriction to S' of f: S > G. The funetion f is said to bhe balanced in (S,3')

f
or simply a b.function 7f, for all x' € 2! and for all vE G, 7t ig x' € V' =

x' € ;/?T Te@s, for all x' € 3", <f(x')> = <F'(x')>,

FEMARK 1. - If the restriction f' of a b.function f is c.o-regular, hv ‘Da and
Proposition 2 it results Tal<Ff(x')>) O T, (<f'(x')>) # b, since now we have
Tg,(<f"(x')>) C T.(<f(x')>); while for a c.o-regular function it can haopen that

;?"ﬂ(gf‘('x’b) OTP(<3"'(.9:')>) = ¢, (See Exarmle 12.1).

REMARK 2. - We can also write b.o-regular function,...,b.homotory ,... instead

of balanced o-regular function,..., balanced homotovy,...

PROPOSITION 13. - Under the assurptions of Definition 6, if S' ie an oven set

of S, all the funetions f: S,S' = C,G' are halanced in (S,8").

Proof. - By Proposition 1 we have <f(x’')>

I

N{f( Ux,) / U.r' is a neighbourhood

of ' in S}, while for §' it results <f'(x')>

A {_*"(Uw, N S')}. Now, since §' is

oven in S, it follows f\{g"’(lfx, ngriy = f“'{"'(?’m,)}. =
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6) Patterms of a function between pairs.

As in Definitions 2, 3 we have:

DEFINITION 7. - Let f:S,S' = G,G' be a function from a pair of tovological
spaces S,S' to a pair of finite directed gravhs C,G'. 4 function g: S,5' = Q,(!
1s called an o-pattern (resp. o'-pattern) of f, if g: S > G ig an o-pattern (resp.
o'-pattern) of £f: S = G and its restriction ¢': S' = (' is an o-patterm (vesp.

o"-pattern) of f': S' > @',

REMARK, - For an o-pattern g of f, we have the following relations:
i) ¥ x € 8-8', g(x) € HG(<f(x)>ﬂ

ii) ¥ 2’ € 57, gla') € Ho(<f(x')>) N R, (“F'(z')>).
DEFINITION 8. - Under the asswmptioms of Definition 7, the function f: S,8' -
G,G' 7s called a.o-regular (resp. q.o"-regular, c.q.regular), <f such are the fune

tion f: S > G and 7ts vestrietion f': S' = (',

FEMARK. - Also for pairs, we can get results similar to those of Remarks 1, 2

to Definition 3 and of Proposition 4.

Instead of Proposition 5, we have onlv:

PROPOSITION 14. - If a a.o-regular function f: S,8' » G,Q' is balanced in (S,S'),

there exists an o-pattern of f.

Proof. - For all x € S=-S', we proceed as in ii) of the proof of Proposition 5.
While, for all z’ € S', we choose as g(x') the vertex with +the lowest index among

the vertices of HG,(<f’(x’)>) < HG(<f'(x’)>) = Hgﬁﬁf(x’)>f. %

REMARK 1. - In general there are no patterns of functions that are onlv balanced
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or q.o-regular. The condition of g.o-regularity, indeed, is necessarv by Prop
osition 5, while the condition of b.g.o-regularity is only sufficient. (See

Example 13.2).

REMARK 2, - In general an o-pattern of a b.function f: 5,5' = 7,47 is rot

balanced. (See FExample 13.72).

DEFINTITION 9. - Two funetions f,g: S,S' = R,G' from a pair of topological
spaces S,S' to a pair of finite directed graphs G,G' are called c.o-homotopic
(resp. c.o'-homotopic) ©f there exists a homotopy F hetween f and g, which is

a c.o~regular (resp. e.o'-regular) function.

By following the proofs of Propositions 6, 7 and by using Definitions 7, 8, we
can obtain properties similar to Propositions 6,7, since both the functions from
§ to G and the ones from S' to G' satisfv the conditions. But, on account of Re-
mark 2 to Proposition 14, in general, the constructed o-patterns are not halanced.

Nevertheless, by Proposition 13, we have:

PROPOSITION 15. - Let S be a topological space, J' an open subset of S, C a
finite direeted gravh, C' a subgraph of G and f:%,3' » G,G' a b.e.q.regular fhné-
tion from S,3' to G,G'. Then:
i).aZZ 1ts o-patterns are b.c.o-regular functions,

11) two o-patterns of f are b.c.o-homotopic to each other. &

7) Duality Theorem for complete homotopy classes when S' 18 open.

Now we just state the Duality Theorem for the c.homotopy, when S’ is an open
subspace of S.
Similarly to Provosition 8, we can prove that the c.o-homotopv is an equiva=

lence relation in the set of c.o-regular functions from $,8' to G,G'. Ther it

follows:
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DEFINITION 10, - Let S be a topologiecal space, S' a subspace of S, G a finite
directed graph and G' a subgravh of G. Ve denote by OC(S,S':G,G') (resp. Q;(S,S';

G,G")) the set of e.o-homotopy (resp. c.o'-homotopu) elasses.

REMARK, - Q;(S,S';G,G’) coincides with QC(S,S’:G';G") and QC(S,G’:G,G') with

Q;(s,s';s',a").

THEOREM 16. - Let S be a topological space, S' an oven subspace of S, G a finite
directed graph and G' a subgravh of G. Then there exists a natural bijection & from
the set of complete o-homotopy classes QC(S,Q':G,G') to the one of complete o"-

homotopy classes Qé(S,S':G,G').

Proof. - It is similar to that one of Theorem 9, bv using Prooositions 15, 15°.
We just observe that, since S' is open, the functions are balanced, hence the

sought patterns can be constructed. B

REMARK. = The proof of Theorem 9 can not be generalized for any subspace S’ of
S. In step iii), indeed, in order to construct an o-pattern z of %, it is neces-

sary that % is a balanced o*-pattern of f. (See Fxample 13.1).

8) Inductive limits.

Let S’ be any subspace of S and U anv open neighbourhaod of S’, We have:

DEFINITION 11. - We denote by FC(F,S':C,Q') the set of e.o-regqular functions

from S,S' to G,G', by FU = FECS,U;G,G') the set of e.o~regular functions Ffrom

S,U to G,G' and by QU = QC(S,U;G,G') the set of e.o-homotopy classes of functioms

from S,U to G,G'. Dually, we can comsider P;(?,S':G,G'), Fﬁ = F:(R,U:G,C') ond

Q” = Qé(S,U;G,G').

Now we consider the collection of sets ”S' = { U/ Uis an onen neighhourhood



of S’} and, since Uq, is decreasingly filtrated, it follows:

PROPOSITION 17, - The family of sets { Fip /U € lq,} with assoetated mavs

. epny | , . .
{ 7\8 / UV E Uq,, V C U} 28 an inductive family <f l,j 2 By, > Fy s the identical

embedding., W

- 17 . . .
PROPOSITION 18. - The associated map 7\\, (v e Usys, V C 1) defined in Proposi-

tion 17, is compatible with the e.o-homotopy in T, and Fy.

Proof. = If f,g: S,U = G,G' are c.o-homotopic, such are also the functions f,g:

e

S,V G,6'. W

PROPOSTTION 19, = Let Ay: O, > O, he the function induced bu the identical
embedding J\i';: FU = F,s then the family of sets {QU / UE Uor} with associated

1
maps {A‘V / UV € Uy, VC U} 78 an inductive family.

Proof. - The family {QU} is inductive since, given I/,V,W € Uy, /vCvecuw,

I v.,u . 1] Vv ou
A= =
from v - A 7 1t results A A A

W oot "

Now, if we consider the family of bijections {¢U: o, = Q;} VAR U.g,} (see The-

orem 16), we obtain:
THEOREM 20. - Let S be a topological spaee, S' a subspace of <, C q finite di-
rected graph and G' a subgreph of G. Then there exists a natural bijection & From

the inductive 1imit 1im Q” to 1im CT"T .
—p . —

Proof. - let U,V € U,, be and V C 7/, We see that the diagram:

o
U
QU QU
I I’
ol |
Q‘{f QT‘/

19
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is commutative. Following, indeed, the proof of Theorem 8, we must just observe

that the identical embedding of a pattern of f € F’U is a pattern of # € F . Con-
sequently, there exists a natural bijection & from Lim QU to Zim Q&, since ¥ U €
—— ——

u ¢ 1is a natural bijection by Theorem 16. (See [ 8], 40.1). &

sy

8) Neighbourhood completely regular functions and homotopies.

The inductive limits of § 8 can be regarded also as sets of regular functions

and homotopy classes.

DEFINITION 12. - Let f: S,8' » G,G' be a c.o-regular (resp. e.o' —regular)
function from a pair of topological spaces S,S' to a pair of finite directed
graphs G,G'. The function f is ealled neighbourhood completely o-regular (resp.
neighbourhood completely o*-regular) iZn (S,S'), or simply n.c.o-regular (resp.
n.c.o'-regular) if there exists an open neighbourhood U of S', such that the
funetion f: S,U = G,G' 7s e.o-regular (resp. c.o'-regular). The open neiahbour—

hood U 1s ealled a balancer of f: S,8' = G,G!

REMARK 1. - We call U a balancer since by Proposition 13 the function f: 8,0

-+ G,G' is balanced.

REMARK 2., -~ A function f: 5,8' = G,G' can be b.c.o-regular without being n.c.

o-regular. (See Fxample 13.3).

PROPOSITION 21, - The inductive limit lim F, coineides with the set FPC(S,S:
— u !

GyG") of the n.c.o-regular fumetions from S,S' to G,G',

Proof. - In fact, two c.o-regular functions *: S,U = G,G' and g:8,V = G,G' (U,V

€ U,,) are equivalent iff f: § - G coincides with g: S - G, since 27 (f) = 2

e () 8

DEFINITION 13. - Let S be a topological space, S' a subspace of 2, G a finite
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directed graph and G' a subgraph of G. Two n.c.o-regular (resp. n.c.o' -regular)
funetions f,g: S,8' = G,6' are called nr.c.o-homotopic (resp. n.c.o”-homotopic),
if there exist an open meighbourhood W of S'xT and ahomotopy F: SxI,S'xI - G,G'
between f and g such that F: SxI,W = CG,G' 73 a e.o-regular (resp. c.o'~regular)

funetion. F is called a n.c.o-homotooy (resp. n.c.o'-homotony).

REMARK, ~ ¥ N (5x{0}) and W N (Sx{1}) can be considered respectively balancers

of f and g.
LEMMA 22. - Let S be a topological space and S' a subspace of S. Then, for
every netghbourhood W of S'xI in SxI, there exists a meighbourhood 11 of S', such

that S'xI C 1IxI Cw.

Proof. - If x is a point of §', then, for all t € I, there is a neighbourhood

of (x,t) of the form Ui‘t)xvt C ¥. Since T is compact, there exists a finite set,
namely Ut ""’Ut , of neighbourhoads which covers I, Thus, if we put UT =

1 n '
U(tl) n.,..n U(tn), we have UxxI is a neighbourhood of {x}xI included in W. By

choosing U = U U, ¥x € S', the assertion immediately follows. ®
Directly, for open neighbourhoods we have:

PROPOSITION 22, - Under the assumptions of Definition 13, let F he o n.c.o~hom

otopy. Then there exists a balancer of T of the form UxI, where U € Ugy,

PROFOSTTION 24, = The n.c.o-homotopy relation is an equivalence relation in the

set ic(S,S':G,G') of n.c.o-regular functions from S,3' to G,CT,

Proof. - The relation cbviously satisfies the reflexive and svmmetric properties.
Also the transitive property is true: in fact, by using the same notations of the
proof of Proposition 8, the homotopy K is c.o-regular by the same proposition. More

over, f is n.c.o-regular, because if we construct by Proposition 22 a balancer UxI
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of F and a balancer VxT of J, (U"W)xI is a balancer of XK. @

DEFINITION 14, - Under the asswumtions of Definition 13, we call OPC(Q,S';C,C')

(resp. Q;C(S,S':G,G')) the set of n.c.o-homotopy (resp. nm.c.o —homotopu) classes.

PEMARK, - We note that Q;c(S,S’;G,G') coincides with anfﬂ,q':G',G") and

9

L] .
(5,526 ,G'™) with 9, (5:5":6,G").

PROPOSITION 25. - The inductive Llimit lim,Q” coineides with the set ODC(Q,S':

—

G,G") of the n.c.o-homotopy classes.

Proof. = ¥ U € U let ¢yt F.=>F (5,5":G,G") be the identical ermbedding.

g 4] ne

Since oy is compatible with the respective homotopy relations, we denote bv 8,

QU - an(S,S’;G,G’) the induced function. Now the diagram:

QU &

1

I \\\‘s

A € (5,8"';G,G') (v 1,veu,, /vCcim
/ ne S -

Ay

®y

&

v

is commutative, then we can define a function &: Iim QU - an(q,s':G,G’). Moreover

—

¢ 1s onto by definition. Finally, we see that & is one to one. let, indeed, a,8 €

QU / &(a) = ®(R) be, then, if f € o and g € 8, there exists a balancer V such that
Ir Tr

f and g are c.o-homotonic. Consecquently, we have Abﬂv o = Aﬁnv R,
Then, Theorem 20 becames:
THEOREM 26 , - Let S be a topologieal space, S' a subspace of S, G a finite di-

rected graph, G' a subgravh of G. Then there exists a natural bijection from the
set of neighbourhood complete o-homotopu classes OWC(Q,S';G,G‘) to the one of

neighbouhood complete o"-homotopy classes Q;C(R,q';G,G'). i

10) Duality Theorem for homotopy classes.
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Tn addition to the Extension Theorem R, we need the following:

PROPOSITION 27. = Let S be a normal topologiecal space, S' a elosed subspace of
S, X a closed subset of S'y, G a finite directed gravh, G' a subgraph of = and f:
S,8' = C,G' an o-regular function. Then there exist a eclosed neighbourhood VW of
‘X and an o-regular funetion g: S,S' - (G,G', which 1is o-homotopic to f and sueh

that g: S,S'W > G,G' <s o-regular.

Proof. - Tt is similar to that one of Theorem 20 in [ 2], by putting X' = ¥,

rather than X" = 5'. &

Moreover, if we recall the definition of singularity (see Packground), by P,

the Extension Theorem can be completed by the following:

PROPOSITION 28. - Let S be a normal topological space, S' a closed subspace of
S, G a finite directed graph, G' a subgraph of G and f: S,8' = G,C' a c.o-regular
funetion. Then there exiets a closed neighbourbood W of S' and a funetion g: <,S'
-+ G,R', which 1s o-homotopic to T and such that the funetion g: S,W > G,°' is c.o-

regular. (See [ 2], Corollary 22). ®

Similarly, we have (see also [ 21, Corcllaries 12, 19)

PROPOSITION 28. - Under the asswumptions of Proposition 27, 1¥ f: S,8' = G,G'

18 ¢.o-regular, so is also the funetion g: S,8'WW - G,C'. W

PROPOSITION 30, = Let SxI a normal tovologieal space, S' a closed subspace of S,
G a finite directed graph and G' a subgravh of G. Then two c.o~homotopic n.c.o-reg

ular functions f,g: S,8' = G,G' are also n.e.o-homotonic.

Proof. - let the open neighbourhood I’ be a balancer of ¥ and g, and let F: SxI,

S'xI > G,G' be a c.o-homotopy hetween f and g. We define the c.o-homotonv J : 81,
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S'xI » G,G", given bv:

flzx) Ye €5, WtE€ [0,%.1
?
J(x,t) = F(x,3t-1) %x € S, ¥t € f%’% 1

Since S is normal, there exists a closed neighbourhood W of S’ included in I. Ve
out Z = WXIO,%J U S'XI%3§4 U WxL%,l} and we note that the function J: SxI,Z2 -+ 4,G'
is c.o-regular, since Wx[O,%} c Ux[O,%{ R S’X[%3S} C 5'xI and WXPg,l] - UX}%,I]
Moreover, we can apply Propositions 27, 29, since Z is closed, S'XI%yé% is a closed
subset of Z and SxI is normal. Then we can construct a closed neighbourhood 7 of
S'XIéaé% and a c.o-regular function K: SxI,2UT - G,G' which is also a homotopy bhe-

tween f and g, by choosing the closed neighbourhoods Lfl’J’k)

, which we employ,
disjoined from Sx{0} and Sx{1}. Finally, since ZUT is a closed neighbourhocod of

S5'xI, it follows immediatelv that f and g are n.c.o-homotopic. ®

THFEOREM 31, - Let SxI be a normal tovologiecal space, S' a elosed subspace of S,
G a finite directed graph and Q' a subgraph of G. Then there exists a natural
bijection from the set of n.c.o-homotopy classes Onc(S,S’;G,G') to the one of

o-homotopy classes Q(S,S';G,G").

Proof. - let j: Fnc(S,S';G,G’) -+ F(5,5':G,G') be the identical embedding. Since
two n.c.o-homotopic functions are also o-homotonic, 7 induces a function J from
QHC(S,S’:G,G') to Q(S5,5';G,G'). Moreover, J is onto by Ry and Pronosition 2R and

it is one to one by Re and Proposition 30, ®
Finally, by Theorems 31, 31% and 26 we obtain (see Theorem 11):

THEOREM 32, - Let S be a countably paracompact normal space, <' a closed subspace
of S, G a finite directed graph and ' a subgraph of G. Then there exists a natural

bijection from the set of o-homotopu classes 0(S,5',G,8') to the one of o'-homotopy

elasses 0'(S,9':G,G')., B
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REMARK 1. - In general the previous result does not hold for any topological

space. (See Example 13.u).

REMARK 2. - In the foregoing conditions it follows that the sets @(S,8';G,G'),

Q(8,8':6*,6'*), 9%(5,57,6,G"), Q"(5,8';G*,G'*) can be identified.

11) Case of n subspaces and of n subgravhs.

The previous results between pairs can be easily generalized to the case between
(n+l)-tuples. (See [2],§ 8 b).

Let S be a topological space, G a finite directed granh, § . ,Fv‘n subspaces of

1’
S and Gl" . .,G‘n subgraphs of G such that SJ. is a subspace of '.%'1. and G, is a subgraoh

of G., ¥i,j =1,...,m , 52

In this case we have to consider functions f: S,5.,.. .,Sn > 0,6 . ,Gn between (n+1)-

]

1 icti 8 ceey P2 .
tuples and their restrictions f‘l 17 Gl’ s f) S’n - Gn

100

We only remark that:

1) A function £+ 838500038 > G’Gl""’Gn is said to be balanced in (.‘I,‘Sl,...,Sn) if:

n

1 E ¢ <f = <Ff

i) ¥ z €5, ; (x1)> ; 1(x1)>,

13 < = < =< >

ii) ¥ z, € 82, f‘(:rg)> fl.(x2)> f‘Q(.ac?) Y

n ¥x €5, Flxe )>=<f (x )>= ... =<Ff (x )> (See Definition 6).
n 7 » 1 n non

2) If the subspaces S .S_are open in 5, all the functions #: &, 91, - "Sn > G,G

1.! .. n 3 -[ L]
""Gn are balanced in (5‘,5’1, ‘e "’Sn) . (See Proposition 13). Hence the Duality Theo-
rem for complete homotopy classes holds when all the subspaces are open. (See Theo-
rem 16),

3) If we denote by U, ,..., Uq the collections of open neighbourhoods respectively of

1 7
the subspaces Sl"' "’Sn’ in Uy =, qu we can consider the subset U of all the n-
"1 n
= 7o) B i < s
tuples U (Ul,...,Ln, such that Ulz... 2”}1' Ry putting U<V < UIETI,...,

U?1 c Vn, it follows that U is decreasingly filtrated, then the families of sets

{F y / U € U} and {QU / U € U} are inductive and there exists a natural bijection be-

tween Iim QU and lim Q;,. (See Thecrem 20).

—— —
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4) A function fr S, S 3 - G,Gl,...,G is called n.e.o-regular in (S,S.

l"'..’n 1,

Sn) if in U there exists a n-tuple U = (U],. "’Un) such that the function f: §, Uys

’Un - G,GI,J..,GH is c.o-regular. (See Definition 12).
Then two n.c.o-regular functions f,g: S,Sl,...,Sn‘+ G’Gl""’Gn are called n.e.o-
homotopie if there exists a homotopy F: SxI,SlxI,. ? xI = (G, 1""’Gn which is

a n.c.o-regular function (See Definition 13).
Hence by 3) we obtain a natural bijection between the sets of n.c.homotopv classes

Q (S,5150++58, 36,0

3 13 ) a-r]d Q ( lgtla,iq G, 1,Ioo,ﬂn)- (See Theor‘em 26)-

1)
Moreover, if SxI is a normal space and S]""’Sn are closed subspaces of 5, we

also observe that:

5) We can generalize the Normalization Theorems (Rb, Fe) following the construction
used in (3] , Final remark i).

6) For the generalization of the Extension Theorems (see Rc, Proposition 27), let

f: 5,8 .,Sn-+ G’Gl""’Gn be an o-regular function. By following what we said

120
in[2] , §8 b, it results:

i) We can construct a closed neighbourhood Un of Sn and an o-regular function

(1)
;£ U .
g S‘,Sl Un’ » gn-l

ii) Let Vn be a closed neighbourhood of Sn such that Sr E-Vn E-An E.Un, where

(2

U Un,Un - G’Gl""’Gn o-homotopic to f.

An is an open set. We construct a closed neighbourhood ”n—l of Sn—l U ”n and an
(2)

o-regular function g ": S‘Sl U Un-l"'"sn—Q U Un—l’yn*1
(1)

topic to g by choosing the closed neighbourhoods, which we emplov in the con-

struction of g(?), disjoined from Vﬁ. Conseauently, also the function 0(2): s,

o

- G’Gl""’Gn—l o-homo-

. _ _ . -
S1 U Un—l""’sn—? U Un—l’Un—l’Vn - G’Gl""’Gn is o-regular and o-homotobic to f.

1ii) Let V be a closed neighbourhood of £ U ¥V such that § Uy Ccv
n-1 n—1 n n-1 n - n-1

c4 . C U,y where Anvl is an open set. Then we go on as in step ii).

(n— l)
n) let g P8y8) U UpllyVayenn sV > G0y,

o-homotoric to f, which follows from the previous process. Then, let V? he a

"’Gn be the o-regular function,

closed neighbourhood of S

5. U ! c C c
5 LIVB such that 92 T V2 “_AQ IQ, where A2 is an

onen set. We construct a closed neighbourhood .U1 of Sl U U9 and an o-regular func
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tion g(n): $,Uy -+ G,G7 o-homotopic to g(nnl) bv choosing the closed neighhourhoods,
which we emplov in the construction of g(n) disioined from V?. Consequentlv, also
the function g(n): S,Ul,V?,...,Vn - G,Gl,...,Gn is o-regular and o-homotonic to

f. Since U],Vq,..., Vn are resvectivelv closed neighbourhoods of Sj,...,cw, the
- A 4 f

function g(n)

is the sought extension.
7) Similarlv to Theorem 31, from 6) it follows that there exists a natural hijection
between the sets of o-homotopv classes anfp,ﬂ3,...,Sn;G,Gl,...,Gn) and Q(Q,?l,...,

Sn;G,Gl,...,Gn), when SxI is a normal space and the subspaces S. are closed.

8) Finally, bv 4) we obtain the conclusive theorem (see Theorem 32):

THEOREM 33. - Let S be a countably paracompact normal space, C a Finite directed

graph, Sl,...,Sn closed subspaces of S and G ..,Gn subgraphs of ~, suech that Qﬂ

1°°

18 a subspace of Si and Gﬁ 18 a subgraph of G., ¥ i, = 1,.0.5n, 1> 1. Then there

exiets a natural bijection from the set of o-homotony classes O(S,?l,...,cp:ﬂ,ﬂﬂ,...,
1 4

Gn) to the ome of o"~homotopy elasses O'(S,Sl,...,QH:G,Cl,...,Cn). -

12) Dualitu Theorems for homotopy aroups.

If we apply the previous results to the particular case of homotopv groups (see

[8]), we obtain:

THEOREM 34, - Let G be a finite directed gravh and v a vertex of C. Then there
exists a natural tsomorphism between the m—th o-homotopy arouv Qm(c,v) and the m—-th

0" ~homotopu group Q;(G,v).

Proof. - At first, let 7" re the unite m-cube and 7 its bourdary. e note that
now Qm(G,v) and Q;(G,v) coincide with Q(Tm,fm:G,v) and Q'(Im,fm:G,v) resnectivelv,
. : . . mo.
and every function f: Im,Im -+ G,v 15 a loop., Since I 13 a commact noymal space
and I a closed subspace, by Theorem 32 there exists a natural bi‘jection between
Qm(G,v) and Q;(G,v), for all m 2 0. Moreover, if f,h: Tm’;m_+ G,v are two loops with

balancers U, 7V respectivelv, we can also call sum of loops f,% the function a7
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given by:
1
['F(Bxl,x?,...,:rm) ¥ zq €10,=
?
(f-h)(ml,...,.rm) = f‘(l,xQ_,...,mm) = ?fz(O,xz,...,xm) Vo, € [q,q R
h(3x1—2,:02_,...,xm) ¥ x, € [-:;,1 1.

Tt follows that fek is a n.c.o-regular function, since there exists a balancer ¥ of
7 -

feh of the form W=U"U r-;-,%q x T" 1 U 7', where U’, V' are the correspondents of

w 7 l 2 Tm—l .
U, V which result from concentrating f, % on [0 ?’]'] x 1 respectively.
Moreover the operation « is compatiblewi+h the n.c.o-homotoby, since the previous sum
of n.c.o-homotopies is a n.c.o-regular function. Hence « induces an operation in
Q (1" 1"6,v).
Now if g: Im,U =+ G,v and k: Im,V > G,v are two o' -patterns of f: Jm,ff - G,v and h: _Tm_,
V = G,v respectively, it follows that gek: Im, W > G,» is an o' -pattern of “h: _Tm_, W
=+ G,v. Then the natural hijection in Theorem 26 hetween an(l‘m_, fm, G,v) and O;;C_(Tm, TF,
G,v) is an isomorphism.
Finally, an(Im,J"m,G,v) is isomorophic to Q(Im,f'm,G,v) = Qm(G,v). There exists, indeed,

a natural bijection bv Theorem 31 and the loop fe» is o-homotonic to the loon f+h,

given by:
‘1“(23:1,3:2,. ..,acm) ¥ < = [Q%‘l
(f+hJ(m1,...,.rm) = 1
h(Qxl-l,xz,.. .,mm) ¥ 2 € {5,11 . (See I' 71, Properties 3.3,

3.7). Thus the theorem follows. W

THEOREM 35, - Let G be a finite dirveeted gravk, G' a subgraph of G and v a vertex
of G'. Then there exists a natural 1somorphism between the relative o-homotopu group

C-WCG,G',V) and the relative o"-homotopy group O;(G,G',v).

Proof. - lLet Jm_l be the union of the (m-1)-faces of Im different from the face
z, = 0. We note that Q (G,G',v) and Q (G,G',v) coincide with Q(Im Tm ,m— G,G )
and § (Im Im Jm_l 3G,G',v) respectively, and everv function " Im,Jm_ > G,G",v
is a relative loop. PRy Theorem 33 there exists a natural bijection between Qm (G,
G',v) and Q;I(G,G’,v) for m 2 1. Proceeding as before we obtain a natural isomorohsm

between an(Im_,fm,er—l_;G_,G",U) and an(.fn,fm,c?m—l:f},a",v) for m > 1. Then we have
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also a natural isomorphism between Qm(G,G’,v) and Q;(G,G',v). L

REMARK, - We define as sum of loops f, & the function fsk instead of f+7h, since
we always must obtain a n.c.o-regular function. (See Pemark to Pronosition R). Nev
ertheless in the proof of Theorem 34 we can also choose as sum of loops the func-

tion f+h, since G' is a singleton.

12) Examles.

12,1) There exists a c.o-regular function without o -patterns.
let S =10,1] be the unit interval, §' = {0} the subspace of &, G = {a,b;k = a}
the directed graph and ¢' = {a} the subgrach of G. Then the function #: 5,5’ =
G," given bv:

F(0) = a

£10,11) = {»}
1z not balanced since {a,b} = <F(0)> D <F£'(0)> = {a}. Moreover, there is no pat-
tern of f, in fact it is TG((f(O)>) = {b} and WG,((f’(O)>) = {a}, hence it follows

m

TACP0)>) T (CFI(0)>) = o,

12.2) There exists a non-balanced o'-patterm of a b.c.o-regular funetion.

Let § = IxI te the topological space, 81 = Ix{0) the subspace of &, % = {a,h; a ~ b,
& > a} the directed graph and G' = {a,bja =+ b} the subgraph of 4. Then the function
given by:

FU{OII) = {a}

£010,1] xI) = {b}

is c.o-regular and balanced since:
{a,b} for t = N,
<FI0,t)> = <AN0,t)> =
{h} vtrel1n,11.

For it is TG,({G,F}) = {b}, it follows that the function g: 3,5' - G,%", given bv:
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g(0,0) = »
a({0} x 10,11) = {a}
(10,11 x T) = {h}
is an o"-pattern of f. PRut the function ¢ is rot balanced since <a(nN,0)> = {a,b} D

{b} = <g'(0,0)>, Nevertheless ¢ is also ar o-pattern of itself. Tn fact we have

Bo(<g(0,0)>) N Hqy(<g'(0,0)>) = {b},

13.3) There exists a h.c.o-regular function which is not n.c.o-regular.

Let & = IxI be the topological space, S' = Ix{N} the subspace of &, 7 = {a,h3a = b,
b > a} the directed grach and G' = {a,h;a = b} the subgraph of G, Then the function
f: §,8" > G,G' given by:

([ £(10,2]x{0})

{a}
(b}

£0 3,11 x{0})

)
f10,3x10,1]) ="{a}

£03,11x10,11)

{b}

is b.c.o-regular since:

{a} ¥t el0,d
<F(t,0)> = <F'(t,0)> = { {a,h} for £ = 1
{ {p} vt € 13,1].

But f is not n.c.o-regular. For every open neighbourhood I’ of S', indeed, the func-

. - . . e . f f
tion f: U = G' is not o-regular since it is b #aand B N4 £ ¢

13.4) There exist a pair of tovological spaces S,S' and a vair of directed gravhs
C,0" such that Q(8,8':G,6') and 0% (8,8':6,C") are not equivotent (see [ 9] ).

let § = {x,x',u,y'} be the topological space with the collection of open sets given
by 6,{x}, {z'}, (2"}, {x,2" v}, {z,2",¥"},5 and let G = {a,a’,b,b'5a > b,a = P',a’
-+ b,a’' = b'} be the directed grach. We obtain that:

1) All the non-bijective o-regular (resp. o"-regular) functions are o-homotonic
(reso. o'-homoltonic) among themselves and particularlv they are o-homotonic (resov.
o' -homotopic) to the constant function f‘nr (x " u,v') = (aya,a,al.

11) There exist only the following four o-regular bilective functions:
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_"1: (xy'yy,y') = (b,b',a,a’),

L - . -~ i )
(by,b'ya',al, f'u: (xyx'yy,y') > (b',bya’,a) and the following four o -regular

o (myx'susy') > (B'ybya,a’), fi:

. e . . #* * 4 [ rs
bijective functions: _u"l."(a:,x',u,y') - (a,a’,b,b'), )"2: (xyx’yu,u') = (a',a,b,b'),

. “ ) 1 1 H 1.7 - R Sy [ ad »
fg(x,:c’,y,y’) - (a,a’,b',b), fu.' (zyx'sysu') > (a'ya,b',b) . We note that f,F,, F,,

-

M ® - .
fiy (reso. £, f‘;,f;,fu) are not c.o-regular (resp. c.o'-regular) furnctions.

. b . . # o # # . . ) . »

111) The functions fl,f?,_r3, fu (resn. f]’"‘ 03 Q,-"'P!i) are not o-homotonic (resm. o -
. » - z ! \ oy % o ) o~ e

homotopic) either ameng themselves or to f‘o. Thus hoth €(S,G) and @ (S,7) consist

of five classes.
iv)let S' = {y} and ¢' = {a} be. It follows that #(S5,8':4,6') consists of the three
classes {fﬁ-}’ {fl}’ {f?}, while @"(S,8':G,G') consists onlv of the class {£.}.
v) Every c.o-regular (resp. c.o'-regular) function is c.ochomotopic (resp. c.o'-

homotopic) to the constant function. Then Theorem 26 holds since ¢ (S,5':4,G7')
1 El

(resp. Q?;G(S,S’;G,G') consists of the class {f.}.

13.5) There exist a topological space S and a dirvected graph C such that 0(S,0) and
0°(S,B) are not equivotent (see [ 9]).

let § = {x,x",u,u',y"} be the tonological space with the collection of open sets
given by ¢, {x}, {x"}, {x,z'}, {x 2 ,u), {xsx ,u' Y, {ey 2, v, {2, 'y u " {2 yu, uY), L,
x'yy'yy™, 5 and let G = {a,a’,b,h',b"a » b,a > h',qa = b",a’ = bh,a’ = b',a’ - h'"}
be the directed graph. By the results of 13.4, in order to obtain regular functions
which do not belong to the class of constant functions, it is necessarv +that the
range of S consists of the vertices a, a' and of two vertices at least among h,h’,
b", Thus we consider functions which are not c.o-regular and such that:

1) The image of {x,x'} is given bv two of the three elements b,»!,h".

11) The image of {y,y',y"} is given by the two elements a,a’.

Then there exist 6:6 = 36 possibities, and, consequentlv, 4(S,7) consists of 27
classes.

On the contrary for the o'-regularity condition, we consider functions which are not
c.o'-rveg'ular and such that:

i*) The image of {z,z'} is given bv the two elements a,a’.

"

Y . . . . N
i17) The image of {y,y',»"} is given bv at least two of the three zlements h,b', 5",



Then there exist 2:24 = 48 possibilities, and, conseguentlv, §"(3,5) consiste of

49 classes.

We remark that Theorem 9 holds since Qc (5,G) (resp. Q; (3,2)) consists of the clase

{f‘o}.

RIMARK, - The topological space considered in Fxamoles 4, § are cquasi-commact,

ron-T, spaces. For other similar examples which concern aquasi-cormact 7., non-7,

1 1 P

spaces, see [ 9],
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