$$T(X,Y) = T'(X,Y) - S(X,Y) - \nabla_{Y}X + \nabla_{Y}^{1}X$$

allora se $X \in \mathfrak{D}$ per ipotesi deve aversi $T'(X,Y) \in \mathfrak{D}$, $\nabla_Y' X \in \mathfrak{D}$, inoltre essendo $\nabla_Y X = \nabla_Y' X + S(Y,X)$, risulta ovviamente anche $\nabla_Y X \in \mathfrak{D}$; si conclude allora che $T(X,Y) \in \mathfrak{D}$ per ogni $X \in \mathfrak{R}$ quindi (A,∇) è trasversa.

Def. 1.3.- <u>Una pseudoconnessione lineare (A,∇) su M si dice che conserva</u>
parallela la distribuzione se soddisfa alle condizioni:

$$A(X) \in \mathfrak{D}$$

$$\nabla_{\mathbf{Y}} \mathbf{X} \in \mathfrak{D}$$

per ogni $X \in \mathfrak{D}$ e per ogni $Y \in \mathfrak{D}_{A}(M)$.

Ovviamente ogni pseudoconnessione lineare fogliettata è anche trasversa e ogni pseudoconnessione lineare trasversa conserva la distribuzione D parallela, ma non viceversa.

n.2. - Pseudoconnessioni sul fibrato trasverso.

In questo paragrafo si denoterà con M una varietà differenziabile paracom patta fogliettata, con fogliazione definita da una distribuzione involutoria $\mathfrak D$ di dimensione $\mathfrak r$; la distribuzione $\mathfrak D$ individua un sottofibrato $\mathfrak D$ del fibrato tangente $\mathsf TM$, di dimensione $\mathsf r$, essendo la fibra sopra $\mathsf x \in \mathsf M$ il sotto spazio $\mathfrak D_\mathsf x$ dello spazio tangente $\mathsf T_\mathsf x(\mathsf M)$, il fibrato $\mathsf Q = \mathsf T(\mathsf M)/\mathsf D$ è il fibrato trasverso al fogliettamento; ogni punto di $\mathsf Q$ è una classe di equivalenza $\mathsf T_\mathsf x$ dove $\mathsf T_\mathsf x \in \mathsf T_\mathsf x(\mathsf M)$, e due vettori $\mathsf T_\mathsf x$ e $\mathsf T_\mathsf x$ di $\mathsf T_\mathsf x(\mathsf M)$ appartengono alla stessa classe di equivalenza se la loro differenza $\mathsf T_\mathsf x$ appartiene al sottospazio $\mathsf T_\mathsf x$

Pron. 2.1.- Ogni pseudoconnessione lineare (A,∇) su M che conserva parallela la distribuzione ② , induce una pseudoconnessione * sul fibrato trasverso (), avente il campo A come campo tensoriale associato.

Dimostrazione.

Per ogni punto $p \in M$, per ogni $Z_p \in T_p(M)$ e per ogni sezione $\phi : p \to \{X_p\}$ del fibrato Q, si ponga;

$${\overset{*}{\nabla}_{Z_{p}}}^{\varphi} = \pi(\nabla_{Z_{p}}^{X})$$

dove $\pi: T(M) \to T(M)/D$ è la surgezione canonica ed X è un campo di vettori su M tale che per ogni $q \in M$ risulta $\phi(q) = \{X_Q\}$.

Si verifica facilmente che per ∜ sono soddisfatte le proprietà:

1)
$$\nabla_{X+Y}^{*} \phi = \nabla_{X}^{*} \phi + \nabla_{Y}^{*} \phi$$

$$2)\overset{*}{\nabla}_{\mathsf{Y}}(\phi+\psi) \;=\; \overset{*}{\nabla}_{\mathsf{Y}}\phi \;+\; \overset{*}{\nabla}_{\mathsf{V}}\; \psi$$

3)
$$\nabla^*_{fX} \phi = f \nabla^*_{X} \phi$$

4)
$$\nabla^*_{X}(\alpha\phi) = \alpha\nabla^*_{X}\phi$$

5)
$$\nabla^*_{\chi}(f\phi) = f \nabla^*_{\chi}\phi + A(\chi)(f)\phi$$

per ogni X,Y $\in \mathfrak{D}_{1}(M)$, f $\in \mathfrak{F}(M)$, $\alpha \in \mathbb{R}$, ϕ e ψ sezioni differenziabili di Q; resta allora definita una ed una sola pseudoconnessione \mathring{T} sul finato Q avente A come campo tensoriale associato e rispetto alla quale $\nabla^*_{Z_p}$ è la pseudoderivata covariante di ϕ rispetto a Z_p (c.f.r.[2] pag.131),

Prop. 2.2.- Se (A,∇) è una pseudoconnessione lineare trasversa su M, allora per ogni Z $\in \mathfrak{A}$ e per ogni sezione ϕ di Q risulta:

$$\overset{*}{\nabla}_{Z} \phi = \pi([Z,X]_{A})$$

essendo $\phi(q) = \{X_q\}$ per ogni $q \in M$ $e^{-\frac{\pi}{2}}$ la pseudoderivata covariante $\frac{di}{dt}$ ϕ rispetto a Z della pseudoconnessione $\frac{\pi}{dt}$ su 0 associata ad (A,∇) . $\frac{\pi}{dt}$ si chiamerà pseudoconnessione basica (o pseudoconnessione di Bott $\frac{di}{dt}$) sul fibrato trasverso 0.

Dimostrazione. -

Infatti per ogni Z $\in \mathfrak{D}_{1}(M)$ e per ogni sezione ϕ di Q si ha:

se $Z \in \mathfrak{D}$ essendo (A, ∇) trasversa risulta $\nabla_X Z \in \mathfrak{D}$ e $T(Z, X) \in \mathfrak{D}$ e quindi $\pi(\nabla_X Z) = \pi(T(Z, X)) = 0$ da cui la tesi.

Prop. 2.3. - Sia (A,∇) una pseudoconessione lineare fogliettata su M, l'applicazione di curvatura (2) R* della pseudoconnessione (A,∇) soddisfa alla proprietà:

$$R^*(X,Y)\phi = 0$$

per ogni X $\in \mathfrak{D}$, $\gamma \in \mathfrak{D}_{1}(M)$ e per ogni sezione ϕ di Q.

* si chiamerà nel seguito pseudoconnessione proiettabile (3).

⁽¹) Tale denominazione è giustificata dal fatto che se A è il campo tensoria le di Kronecker, allora ♥ è una connessione basica secondo Bott (c.f.r. [1]pag. 33).

⁽²⁾ L'applicazione di curvatura R di una pseudoconnessione Γ su Q è definita da: $R(X,Y)\phi = \nabla_X(\nabla_Y\phi) - \nabla_Y(\nabla_X\phi) - \nabla_{X}(X,Y) \phi$ per ogni $X,Y \in P_1(M)$ e ϕ sezione di Q; ∇ ed A sono rispettivamente la pseudoderivata covarian te ed il campo tensoriale associati a Γ .

⁽³⁾ Tale denominazione è giustificata dal fatto che se A è il campo tensoriale di Kronecker allora \hat{T} è una connessione proiettabile secondo Molino op pure basica secondo Kamber - Tondeur (c.f.r.[4]).

Dimostrazione. -

Se X ed Y sono campi di vettori su M e ϕ : $q \rightarrow \{Z_q\}$ è una sezione del fibrato Q = T(M)/D, si ha:

$$R^{*}(X,Y) \phi = {\overset{*}{\nabla}}_{X}({\overset{*}{\nabla}}_{Y} \phi) - {\overset{*}{\nabla}}_{Y}({\overset{*}{\nabla}}_{X} \phi) - {\overset{*}{\nabla}}_{[X,Y]_{\Delta}} \phi =$$

 $\pi(\nabla_X (\nabla_Y Z) - \nabla_Y (\nabla_X Z) - \nabla_{[X,Y]} Z) = \pi(R(X,Y)Z);$ se $X \in \mathcal{D}$ allora per la b") della prop. 1.3 deve risultare

$$R(X,Y)Z \in \mathfrak{D}$$
 e quindi $\pi(R(X,Y)Z) = 0$, da cui la tesi.

I risultati ora esposti, si possono invertire in quanto vale il seguente teorema:

Teorema 2.1.- Ogni pseudoconnessione * sul fibrato trasverso () induce una pseudoconessione lineare su M, trasversa o fogliettata a seconda che * è basica oppure proiettabile.

Dimostrazione. -

Avendo supposto M paracompatta allora esiste una metrica riemanniana su M e quindi si può costruire il fibrato vettoriale D^{\perp} (isomorfo a Q) tale che $T(M) = D \oplus D^{\perp}$; inoltre fissato un campo tensoriale differenziabile A di specie (1,1) su M, esiste una pseudoconnessione $\bar{\Gamma}$ sul fibrato D associata ad A (c.f.r.[2] pag. 114); premesso ciò sia $\bar{\Gamma}$ una pseudoconnessione sul fibrato trasverso Q, avente A come campo tensoriale associato e siano inoltre $\bar{\nabla}$, $\bar{\nabla}$ le pseudoderivate covarianti di $\bar{\Gamma}$ e $\bar{\Gamma}$ rispettivamente, indicato con p l'isomorfismo tra D^{\perp} e Q = T(M)/D, sia ∇ l'operatore definito da: $\nabla_{\mathbf{X}} \mathbf{Y} = \bar{\nabla}_{\mathbf{X}} \mathbf{Y}_1 + p(\nabla^*_{\mathbf{X}} \mathbf{\phi})$

per ogni X,Y = Y₁ + Y₂
$$\in$$
 \mathfrak{P}_1 (M) e per ogni sezione ϕ di Q tale che ϕ (q) = $\{Y_q\}$ per ogni $q \in M$. La coppia (A, ∇) è una pseudoconnessione lineare su M che induce T su Q, in quanto essendo $\nabla_X Y_1 \in \mathfrak{D}$ e $\pi \circ p = i_Q$ si ha:

$$\pi(\nabla_{X}Y) = \pi(\bar{\nabla}_{X}Y_{1}) + \pi(p(\bar{\nabla}_{X}^{*})) = \bar{\nabla}_{X} \phi$$

Se si fa l'ipotesi che $Y \in \mathfrak{D}$ allora $Y_2 = 0$ e quindi $\phi = 0$, da cui si ottiene: $\nabla_X Y = \nabla_X Y_1 \in \mathfrak{D}$.

Si supponga ora \mathring{T} basica, allora $A(X) \in \mathfrak{D}$ se $X \in \mathfrak{D}$, inoltre se $X \in \mathfrak{D}$ e $Y \in \mathfrak{P}(M)$ per il campo tensoriale di torsione T di (A, ∇) si ha:

$$\pi(T(X,Y)) = \pi(\nabla_X Y - \nabla_Y X - [X,Y]_A) =$$

$$= \pi(\nabla_X Y) - \pi([X,Y]_A) = 0$$

da cui consegue che T(X,Y) e e quindi (A,∇) è trasversa.

Se $\overset{*}{\Gamma}$ è proiettabile allora per ogni $X \in \mathfrak{D}$ risulta $A(X) \in \mathfrak{D}$ ed inol tre per ogni $X \in \mathfrak{D}$, Y, $Z \in \mathfrak{D}_1(M)$ con ovvio significato dei simboli si ha:

$$\pi(\mathsf{R}(\mathsf{X},\mathsf{Y})\mathsf{Z}) = \pi(\nabla_{\mathsf{X}}(\nabla_{\mathsf{Y}}\mathsf{Z}) - \nabla_{\mathsf{Y}}(\nabla_{\mathsf{X}}\mathsf{Z}) - \nabla_{\left[\mathsf{X},\mathsf{Y}\right]_{\mathsf{A}}}\mathsf{Z}) =$$

$$= \pi(\nabla_{\mathsf{X}}(\nabla_{\mathsf{Y}}\mathsf{Z}_{\mathsf{I}}) + \nabla_{\mathsf{X}} \mathsf{p}(\nabla_{\mathsf{Y}}^{\mathsf{A}}) - \nabla_{\mathsf{Y}} \nabla_{\mathsf{X}} \mathsf{Z}_{\mathsf{I}} -$$

$$- \nabla_{\mathsf{Y}} \mathsf{p}(\nabla_{\mathsf{X}}^{\mathsf{A}}\mathsf{p}) - \nabla_{\left[\mathsf{X},\mathsf{Y}\right]_{\mathsf{A}}}\mathsf{Z}_{\mathsf{I}} - \mathsf{p}(\nabla_{\mathsf{X}}^{\mathsf{A}}\mathsf{Y}) - \nabla_{\mathsf{Y}} \nabla_{\mathsf{X}} \mathsf{Z}_{\mathsf{I}} -$$

poiché $\bar{\nabla}_{\gamma} Z_{\gamma} \in \mathfrak{D}$ risulta $\nabla_{\chi} (\bar{\nabla}_{\gamma} Z_{\gamma}) \in \mathfrak{D}$ e $\nabla_{\gamma} (\bar{\nabla}_{\chi} Z_{\gamma}) \in \mathfrak{D}$ e quindi la precedente uguaglianza si riduce a:

$$\pi(\mathsf{R}(\mathsf{X},\mathsf{Y})\mathsf{Z}) = \pi(\nabla_{\mathsf{X}}(\mathsf{p} \overset{*}{\nabla}_{\mathsf{Y}} \phi)) - \pi(\nabla_{\mathsf{Y}}(\mathsf{p} \overset{*}{\nabla}_{\mathsf{X}} \phi)) - \overset{*}{\nabla}[\mathsf{X},\mathsf{Y}]_{\mathsf{A}} \phi =$$

$$= \overset{*}{\nabla}_{\mathsf{X}}(\overset{*}{\nabla}_{\mathsf{Y}} \phi) - \overset{*}{\nabla}_{\mathsf{X}}(\overset{*}{\nabla}_{\mathsf{Y}} \phi) - \overset{*}{\nabla}[\mathsf{X},\mathsf{Y}]_{\mathsf{A}} \phi =$$

$$= \overset{*}{\mathsf{R}}(\mathsf{X},\mathsf{Y})\mathsf{Z} = 0$$

da cui si conclude che R(X,Y)Z ∈ ⊅ e quindi (A,⊽) è fogliettata. 🌉