INTRODUZIONE. -

Sia V_n una varietà differenziabile reale n-dimensionale di classe C_n^{∞} , \mathcal{F} l'algebra delle funzioni differenziabili su V_n , \mathcal{X} l' \mathcal{F} -modulo dei campi di vettori controvarianti differenziabili su V_n , \mathcal{T}_s^r (r=0,1,...; s=0,1...) l' \mathcal{F} -modulo dei campi di tensori differenziabili di specie (r,s) su V_n , $\mathcal{T}_o^o = \mathcal{F}$, $\mathcal{T}_o^1 = \mathcal{X}$).

E' nota l'importanza, nello studio di V_n , dello spazio di coomologia di De Rham q-dimensionale $(1 \leq q \leq n)$ H delle q-forme differenziali; esso è isomorfo allo spazio di coomologia di Céch q-dimensionale \mathbf{H}^q a coefficienti reali ed è un invariante topologico di V_n .

Recentemente ([1],[10],[11]) sono stati studiati diversi spazi di coomologia associati ad una connessione lineare su V_n . Si è provato che alcuni di tali spazi risultano isomorfi allo spazio di coomologia 1-dimensionale H^1 di De Rham e quindi sono invarianti topologici di V_n , mentre altri risultano invarianti di V_n dipendenti dalla connessione assegnata.

Nel n.1 di tale lavoro, assegnata su V_n in due modi equivalenti una connessione Γ^2 del secondo ordine di specie (0,1), si introduce un operatore $\delta^3: \overline{J} + \overline{Z}_3^0$ di differenziazione covariante terza rispetto a Γ^2 .

Indi (n.2), data in modo naturale la nozione di campo di tensori tripli covarianti esatto o chiuso rispetto a δ^3 , si definisce lo spazio $H^3_{\Gamma^2}$ di coomologia rispetto a Γ^2 dei campi di tensori tripli covarianti e si dimostra che esso è isomorfo allo spazio di coomologia 1-dimensionale $H^1_{\Gamma^2}$ a coefficienti nel fascio delle funzioni a differenziale covariante terzo rispetto a Γ^2 nullo.

Nel n.3 si forniscono alcuni esempi significativi.

Lavoro eseguito nell'ambito del G.N.S.A.G.A. del C.N.R.

Nel n.4 infine, considerata su V_n una pseudoconnessione lineare Γ e definito un operatore di differenziazione covariante q-esima $\delta^q: \overline{\mathcal{F}} \to \overline{\mathcal{C}}_q^0$ ($\forall q \geq 1$), si determina una successione di spazi di coomologia $\{H_\Gamma^q\}_{q\in \mathbb{N}^+}$ associati a Γ . Il primo elemento H_Γ^1 di tale successione coincide con lo spazio di coomologia 1-dimensionale H^1 di Γ 0 di Γ 1 di Γ 2 e isomorfo allo spazio di coomologia 1-dimensionale a coefficienti nel fascio delle funzioni a differenziale covariante Γ 2 nullo.

- 1. CONNESSIONI DEL SECONDO ORDINE DI SPECIE (0,1).
- E. Bompiani ha definito in [2] una connessione del secondo ordine assegnando su ogni carta locale (U,ϕ) di V_n due famiglie di funzioni $(C_{ij,h}^{pq},D_{ij,h}^{p})$ tali che in ogni intersezione non vuota dei domini di due carte locali siano soddisfatte certe relazioni ((C) e (D) in [2]) che assicurano carattere tensoriale alle combinazioni del tipo

$$\partial_{ij} \xi^{p} + C_{ij,h}^{pq} \partial_{q} \xi^{h} + D_{ij,h}^{p} \xi^{h}$$

dove le ξ^p sono le componenti in (U,ϕ) di un campo di vettori controvarianti.

Successivamente C. Di Comite ha provato in [5] che ogni connessione del secondo ordine può essere determinata globalmente su V_n da una coppia di operatori C e \mathcal{D} , definiti in $\mathcal{X} \times \mathcal{X}$ e a valori rispettivamente in \mathcal{T}^2_0 e in \mathcal{X} , soddisfacenti a certi assiomi.

Considerazioni analoghe a quelle di Bompiani possono farsi assegnando su ogni carta locale (U,ϕ) di V_n due famiglie di funzioni (C_{ij}^{pq},D_{ij}^{p}) in modo tale che abbiano carattere tensoriale le combinazioni seguenti

(1.1)
$$\partial_{ij} \omega_{h} + C_{ij,h}^{pq} \partial_{q} \omega_{p} + D_{ij,h}^{p} \omega_{p}$$

dove le ω_p sono le componenti in (U,ϕ) di una l-forma differenziale.

E' facile verificare che le combinazioni (1.1) sono le componenti di un campo di tensori di specie (0,3) se valgono le seguenti relazioni:

$$(1.2) \ C_{\mathbf{i}'\mathbf{j}',\mathbf{h}'}^{\mathbf{p}'\mathbf{q}'} = C_{\mathbf{i}\mathbf{j},\mathbf{h}}^{\mathbf{p}\mathbf{q}} \ \theta_{\mathbf{i}}^{\mathbf{i}}, \theta_{\mathbf{j}}^{\mathbf{j}}, \theta_{\mathbf{h}}^{\mathbf{h}}, \theta_{\mathbf{p}}^{\mathbf{p}'\mathbf{q}'} - \delta_{\mathbf{j}',\mathbf{h}}^{\mathbf{q}',\mathbf{p}}, \theta_{\mathbf{p}}^{\mathbf{p}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{p}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{p}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{p}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{p}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{q}',\mathbf{h}'}, \theta_{\mathbf{p}}^{\mathbf{q}',$$

$$(1.3) \ D_{i'j',h'}^{p'} = D_{ij,h}^{p} \ \theta_{i}^{i}, \theta_{j}^{j}, \ \theta_{h}^{h}, \theta_{p}^{p'} - C_{i'j',h'}^{l'q'}, \theta_{p}^{p}, \theta_{p}^{p'} - \theta_{i'j'h}^{p}, \theta_{p}^{p'}$$

in cui si sono indicate con $C_{i'j',h'}^{p'q'}$ e $D_{i'j',h'}^{p'}$ le funzioni definite nella carta locale (U',ϕ') come dianzi, si è supposto $UnU'\neq\emptyset$ e dove, se $\phi=(x_1^1,\dots,x_n^n)$ e $\phi'=(x_1^1,\dots,x_n^n)$ si è posto $\theta_{i'}^1=\frac{\partial x_i^1}{\partial x_i^1}$, $\theta_{i'j'}^1=\frac{\partial^2 x_i^1}{\partial x_i^1\partial x_j^1}$ ecc.

DEF. 1 - L'ente geometrico avente per componenti in (U,ϕ) le funzioni $C_{ij,q}^{qp}$ e $D_{ij,h}^{p}$ sarà chiamato <u>connessione del secondo ordine di specie</u> (0,1);1'en te geometrico avente per componenti soltanto le funzioni $C_{ij,h}^{pq}$ si chiamerà C-connessione di specie (0,1).

Si mostrerà ora che le connessioni del secondo ordine di specie (0,1), cosi come ha provato C.Di Comite in [5] per le connessioni del secondo ordine, possono essere definite globalmente su V_n .

DEF. 2. - Sia $C: (X,Y) \rightarrow C_{X,Y}$ una applicazione \mathbb{R} -lineare di $X \times X$ nello spazio vettoriale su \mathbb{R} delle applicazioni \mathbb{R} -lineari di \mathbb{Z}_1^0 in \mathbb{Z}_1^1 soddisfacente ai seguenti assiomi:

$$(C_1)$$
 $C_{fX,Y^{\omega}} = fC_{X,Y^{\omega}} - Y(f)X \otimes \omega$

$$(C_2)$$
 $C_{X,fY}^{\omega} = fC_{X,Y}^{\omega}$

$$(C_3)$$
 $C_{X,Y}f\omega = fC_{X,Y}\omega + X(f) Y \otimes \omega + Y(f)X \otimes \omega$

per ogni f $\in \mathcal{F}$, per ogni X,Y $\in \mathcal{X}$ e per ogni $\omega \in \mathcal{C}_1^0$.

Sia inoltre $\mathcal{D}: (X,Y) \to \mathcal{D}_{X,Y}$ un'applicazione \mathcal{F} -bilineare di $\mathcal{X} \times \mathcal{X}$ nell' \mathcal{F} -modulo degli endomorfismi di \mathcal{T}_1^0 soddisfacente al seguente assioma:

(D)
$$\mathcal{D}_{X,Y} f \omega = f \mathcal{D}_{X,Y} \omega + C_1^1 (df \otimes C_{X,Y} \omega) + Y(X(f)) \omega$$

per ogni f ϵ \mathcal{F} , per ogni X,Y ϵ \mathcal{X} , per ogni ω $\epsilon \mathcal{T}_1^0$ e dove si è indicato con C_1^1 la contrazione del primo indice di controvarianza col primo indice di covarianza.

Si dice allora che la coppia di operatori (C,D) definisce su V_n una connessione Γ^2 del secondo ordine di specie (0,1) e che l'operatore C definisce su V_n una C-connessione di specie (0,1).

Per ogni ω ϵZ_1^0 , il campo tensoriale $D^2\omega$ ϵZ_3^0 così definito

$$(1.4) D_{\omega}^{2}: (X,Y) \in X \rightarrow D_{X,Y}^{0} \in \mathbb{Z}_{1}^{0}$$

si chiama differenziale covariante secondo di ω rispetto a Γ^2 e l'applicazione $D^2:\omega \Rightarrow D^2\omega$

si chiama differenziazione covariante del secondo ordine rispetto a r^2 .

Come per le connessioni del secondo ordine (cfr.[5]) sussiste la seguente:

Prop. 1 - Se ∇ <u>è la derivazione covariante rispetto ad una connessione lineare</u> Γ <u>su</u> V_n , <u>gli operatori</u> C e D <u>definiti per ogni</u> $(X,Y) \in X$ <u>e per ogni</u> $\omega \in C$ <u>nel modo seguente:</u>

(1.5)
$$C_{X,Y} \omega = X \otimes \nabla_{Y} \omega + Y \otimes \nabla_{X} \omega - (\nabla_{Y} X) \otimes \omega$$

$$(1.6) \quad \mathcal{D}_{X,Y} \omega = \nabla_{Y}(\nabla_{X}\omega) - \nabla_{\nabla_{Y}X}\omega$$

La connessione del secondo ordine di **spec**ie (0,1) definita dalla proposizione precedente secondo le (1.5) e (1.6) si chiama <u>dedotta dalla connessione</u> <u>lineare</u> r.

Se Γ^2 è una connessione del secondo ordine di specie (0,1) defini-

ta da (C, \mathcal{D}) , é facile verificare che essa induce su ogni sottovarietà aperta U di V_n una connessione Γ_U^2 dello stesso tipo.

Se (U, ϕ) \acute{e} una carta locale di V_n con $\phi = (x^1, ..., x^n)$, posto per ogni i = 1, ..., n $\frac{\partial}{\partial x^1} = e_i e_j dx^j = e^j$, le funzioni $C_{ij,h}^{pq} = D_{ij,h}^{p}$ definite su U da:

(1.7)
$$(C_U)_{e_i,e_i} e^p = C_{ij,h}^{pq} e_q \cdot e^h$$

$$(1.8) \qquad (\mathcal{D}_{U})_{e_{\mathbf{i}},e_{\mathbf{j}}} e^{p} = D_{\mathbf{i}\mathbf{j},h}^{p} e^{h}$$

si chiamano componenti di r^2 nella carta (U, ϕ).

Indicate con $C_{i'j',h'}^{p'q'}$ e $D_{i'j',h'}^{p'}$ le componenti di r^2 in un'altra carta locale (U', ϕ ') tale cge UNU' $\neq \emptyset$, si verifica facilmente che sussistono le (1.2) e (1.3) dette <u>formule di trasformazione</u> delle componenti di r^2 .

Viceversa se su ogni carta locale (U, ϕ) di V_n vengono assegnate due famiglie di funzioni $C_{ij,h}^{pq}$ e $D_{ij,h}^{p}$ verificanti le (1.2) e (1.3) in ogni intersezione non vuota di due domini di tali carte, si può definire, mediante le (1.7) e (1.8), una coppia di operatori (C_{U} , D_{U}) che determina su U una connessione del secondo ordine di specie (0,1) Γ_{U}^{2} . Si definisce infine su V_n un'unica connessione del secondo ordine di specie (0,1) determinata dalla coppia di operatori (C,D) tale che, se p e V_n e (U, ϕ) è una carta locale con \hat{p} e U, risulti:

$$(C_{X,Y}\omega)_p = ((C_U)_{X_{|U},Y_{|U}}\omega_{|U})_p, (D_{X,Y}\omega)_p = ((D_U)_{X_{|U},Y_{|U}}\omega_{|U})_p$$

per ogni X,Y eΧ e per ogni ω e \mathbb{Z}_1^0

Ne segue che la DEF: I di connessione del secondo ordine di specie (0,1) è equivalente alla DEF:2.

Si osservi che se Γ^2 è una connessione del secondo ordine di specie (0,1) dedotta da una connessione lineare di componenti Γ^h_{ij} , allora le componenti di Γ^2 sono, come segue facilmente da (1.5) e (1.6):

(1.9)
$$C_{ij,h}^{pq} = -\delta_i^q \Gamma_{jh}^p - \delta_j^q \Gamma_{ih}^p - \delta_h^p \Gamma_{ji}^q$$

(1.10)
$$D_{ij,h}^{p} = -\partial_{j} \Gamma_{ih}^{p} + \Gamma_{ik}^{p} \Gamma_{jh}^{k} + \Gamma_{ji}^{k} \Gamma_{kh}^{p}.$$

Come in [5] sussistono le seguenti due proposizioni:

PROP. 2 - Se (C,D) è una coppia di operatori che determina su V_n una connessione Γ^2 del secondo ordine di specie (0,1) allora la coppia di operatori (C',D') definita da :

$$C'_{X,Y} \omega = \frac{1}{2} (C_{X,Y} \omega + C_{Y,X} \omega + [X,Y] \otimes \omega)$$

$$V_{X,Y} \varepsilon X$$

$$D'_{X,Y} \omega = \frac{1}{2} (D_{X,Y} \omega + D_{Y,X} \omega)$$

$$V \omega \varepsilon Z_{1}^{0}$$

determina su V_n una connessione Γ^{*2} del secondo ordine di specie (0,1). Se $(pq)_{ij,h}$, $D^p_{ij,h}$) sono le componenti di Γ^2 in una carta locale (U,ϕ) , allora le componenti di Γ^{*2} nella stessa carta sono $(C^{pq}_{(ij),h}, D^p_{(ij),h})$.

PROP. 3. - <u>La più generale connessione del secondo ordine di specie</u> (0,1) è determinata dalla coppia di operatori (CD) <u>tali che</u>:

$$\begin{array}{l} \boldsymbol{\mathcal{C}}_{X,Y} & \boldsymbol{\omega} = \boldsymbol{X} & \boldsymbol{\omega} & \nabla_{Y} & \boldsymbol{\omega} + \boldsymbol{Y} & \boldsymbol{\omega} & \nabla_{X^{\boldsymbol{\omega}}} & -(\nabla_{Y}\boldsymbol{X}) & \boldsymbol{\omega}\boldsymbol{\omega} & + \boldsymbol{A}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\omega}) \\ \\ \boldsymbol{\mathcal{D}}_{X,Y} & \boldsymbol{\omega} = & \nabla_{Y} & \nabla_{X^{\boldsymbol{\omega}}} & - & \nabla_{\nabla_{Y}\boldsymbol{X}} & \boldsymbol{\omega} + (C_{45}^{12}(\boldsymbol{A}\boldsymbol{\omega}\boldsymbol{\nabla}\boldsymbol{\omega}))(\boldsymbol{X},\boldsymbol{Y}) + S(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\omega}) \end{array}$$

per ogni X,Y $\in \mathcal{X}$ \underline{e} $\omega \in \mathcal{C}_1^0$ \underline{e} dove ∇ \underline{e} la derivazione covariante rispetto ad una connessione lineare ed A \underline{e} S \underline{sono} due qualsiasi campi tensoriali di specie (2,3) \underline{e} (1,3) $\underline{rispettivamente}$.

Sia Γ^2 una connessione del secondo ordine di specie (0,1) definita da (C,D) e sia ω $\in \mathbb{Z}_1^0$ avente componenti ω_i in una carta locale (U,ϕ) di V_n , allora le componenti del campo di tensori tripli covarianti $D^2\omega$ nella stessa carta sono le (1.1.).

In particolare se $f \in \mathcal{F}$ le componenti in (U,ϕ) di $D^2(df)$ sono:

(1.12)
$$\partial_{ijh} f + C_{ij,h}^{pq} \partial_{pq} f + D_{ij,h}^{p} \partial_{p} f$$
.

Per ogni f ϵ $\mathcal F$ il campo di tensori δ^3 f = D^2 (df) si chiama <u>differenziale covariante terzo di</u> f <u>rispetto a</u> Γ^2 e l'operatore

$$\delta^3 = D^2 \circ d : f \rightarrow \delta^3 f$$

si chiama differenziazione covariante terza rispetto a Γ^2 .

Si osservi che se Γ^2 è dedotta da una connessione lineare Γ , tenendo presenti le (1.9) e (1.10) segue che l'operatore δ^3 coincide con l'operatore Δ^3 di derivazione covariante terza rispetto a Γ studiato in [11].

2. SPAZI DI COOMOLOGIA ASSOCIATI A r^2 . -

L'operatore δ^3 di differenziazione covariate terza dispetto ad una connessione Γ^2 del secondo ordine di specie (0,1) è un omomorfismo (rispetto alle strutture di spazio vettoriale su $\mathbb R$ di $\mathcal F$ e $\mathcal T_3^0$) e quindi $\delta^3(\mathcal F)$ è un sottospazio vettoriale di $\mathcal T_3^0$. Un campo di tensori ω appar-

tenente a $\delta^3(\mathcal{F})$ si chiamerà <u>esatto</u> rispetto a δ^3 .

Da (1.12) segue che ω \in $\frac{0}{3}$ è esatto rispetto a δ se e solo se esiste f \in \mathcal{F} tale che, qualunque sia la carta locale (U, ϕ) di V_n rispetto alla quale ω abbia componenti $\omega_{i,jh}$, risulti:

(2.1)
$$\omega_{ijh} = \partial_{ijh} f + C_{ij,h}^{pq} \partial_{pq} f + D_{ij,h}^{p} \partial_{p} f.$$

Un campo di tensori $\omega \in \frac{0}{3}$ si dirà invece <u>chiuso</u> rispetto a δ^3 se è <u>localmente esatto</u>, cioé se per ogni p ϵ V_n esiste una carta locale (U, ϕ) di V_n con p ϵ U ed esiste una funzione f differenziabile in U legata alle componenti $\omega_{i,ih}$ di ω in (U, ϕ) dalla relazione (2.1).

Indicati con $E_{\Gamma^2}^3$ e $C_{\Gamma^2}^3$ gli insiemi dei campi di tensori differenziabili tripli covarianti rispettivamente esatti e chiusi rispetto a δ^3 , $E_{\Gamma^2}^3$ = $\delta^3(\mathcal{F})$ è un sottospazio di $\frac{0}{3}$; inoltre è facile provare che anche $C_{\Gamma^2}^3$ è un sottospazio di $\frac{0}{3}$ e poiché ogni campo di tensori esatto rispetto a δ^3 è anche chiuso rispetto a δ^3 , $E_{\Gamma^2}^3$ è un sotto spazio di $C_{\Gamma^2}^3$

DEF. 1. - Lo spazio vettoriale quoziente

$$H_{\Gamma^2}^3 = C_{\Gamma^2}^3 / E_{\Gamma^2}^3$$

si chiama spazio di coomologia di V_n rispetto a Γ^2 dei campi di tensori differenziabili tripli covarianti.

Allo scopo di studiare lo spazio di coomologia $H^3_{\Gamma^2}$ definito precedentemente, si consideri il fascio di funzioni su V_n che si ottiene associando ad ogni aperto A di V_n lo spazio vettoriale su \mathbb{R} P_A delle funzioni P_A differenziabili in A tali che

$$\delta^3 f_{\Delta} = 0$$
 in A,

e associando ad ogni coppia di aperti A e B di V_n tali che A \supseteq B

l'omomorfismo di restrizione $i_B^A: f_A \in P_A \to f_{A|B} \in P_B$.

Tale fascio si chiamerà fascio delle funzioni a differenziale covariante te terzo rispetto a r² nullo e lo si indicherà con $P_{r^2}(v_n, A, i_B^A)$ o semplicemente con P_{r^2} .

Si premetteranno ora alcune necessarie notazioni e brevi richiami della teoria dei fasci che saranno utili in seguito.

Se $U = (U_i)_{i \in I}$ è un ricoprimento aperto proprio di V_n si indicherà con:

 $\mathcal{P}^{o}_{\Gamma^{2}}$ (U) lospazio vettoriale delle O-cocatene relative ad U e a coefficienti in $\mathcal{P}_{\Gamma^{2}}$;

 $Z^1_{\Gamma^2}(U)$ lo spazio vettoriale degli 1-cocicli relativi ad U e a coefficienti in ${\cal P}_{\Gamma^2}$;

1'omomorfismo di cobordo e con $E_{\Gamma^2}^1(U) = \partial \mathcal{P}_{\Gamma^2}^0(U)$ lo spazio vettoriale **dei c**obordi sottospazio di $Z_{\Gamma^2}^1(U)$;

 ${\cal H}^1_{\Gamma^2}({\sf U})={\sf Z}^1_{\Gamma^2}({\sf U})/\partial {\cal P}^0_{\Gamma^2}({\sf U})$ lo spazio di coomologia 1-dimensionale relativo ad ${\sf U}$ e a valori în ${\cal P}_{\Gamma^2}$.

Indicato ora con $\mathcal U$ l'insieme preordinato e filtrante dei ricoprimenti aperti propri di V_n , se U,U' $\in \mathcal U$ U' è un raffinamento di U ($\forall > U'$) con applicazione di raffinamento t, si indica con T_U^U , l'omomorfismo (che risulta indipendente da t) che ad ogni $\llbracket p_U^1 \rrbracket \epsilon = \frac{1}{r^2}$ (U) associa

 $[T_{IJ}^U(p_{IJ}^1)] \ \epsilon \ \boldsymbol{\mathcal{H}}_{\mathbb{P}^2}^1(U'). \ \ \text{Tali omomorfismi hanno le seguenti proprietà:}$

$$\begin{cases} T_U^U = identit\tilde{a} & \forall U \in \mathcal{U} \\ T_{U''}^U \circ T_{U'}^U = T_{U''}^U & U \geq U' \geq U'' \end{cases}$$

quindi $\left\{\mathcal{U},\mathcal{H}_{\Gamma^2}^1(U),\,T_{U'}^U\right\}$ è un sistema diretto di spazi vettoriali. Il li-

mite induttivo di tale sistema diretto si indica con $\mathcal{H}_{\Gamma^2}^1$ e si chiama spazio di coomologia l-dimensionale di V_n a coefficienti in \mathcal{P}_{Γ^2} .

Infine, denotato con

$$T^{U}:\mathcal{H}^{1}_{\mathbb{P}^{2}}(U):\mathcal{H}^{1}_{\mathbb{P}^{2}}$$

l'omomorfismo canonico, valgono le seguenti proprietà:

$$\begin{cases}
T^{U'} \circ T_{U'}^{U} = T^{U} & \forall U, U' \in \mathcal{U} \Rightarrow ' U \geq U'; \\
T^{U}([p_{U}^{1}]) = T^{\overline{U}}([p_{\overline{U}}^{1}]) \Longleftrightarrow \exists U' \in \mathcal{U} \Rightarrow ' U \geq U', \overline{U} \geq U' \\
e T_{U'}([p_{\overline{U}}^{1}]) = T_{U'}^{\overline{U}}([p_{\overline{U}}^{1}])
\end{cases}$$

$$\begin{cases}
T^{U} \circ T_{U'}^{U} = T^{U} & \forall U, U' \in \mathcal{U} \Rightarrow ' U \geq U'; \overline{U} \geq U'; \\
e T_{U'}([p_{\overline{U}}^{1}]) = T_{U'}^{\overline{U}}([p_{\overline{U}}^{1}])
\end{cases}$$

$$\begin{cases}
T^{U} \circ T_{U'}^{U} = T^{U} & \forall U, U' \in \mathcal{U} \Rightarrow ' U \geq U'; \overline{U} \geq U'; \\
e T_{U'}([p_{\overline{U}}^{1}]) = T_{U'}^{\overline{U}}([p_{\overline{U}}^{1}])
\end{cases}$$

Si dimostrerà la seguente :

Proposizione 1. - Lo spazio $H_{\Gamma^2}^3$ di coomologia di V_n rispetto a redei campi di tensori differenziabili tripli covarianti e isomorfo allo spazio $\mathcal{H}_{\Gamma^2}^1$ di coomologia 1-dimensionale di V_n delle funzioni a differenziale covariante terzo rispetto a Γ^2 nullo.

Dimostrazione. - Se $\omega \in C_{\Gamma^2}^3$, esiste un ricoprimento aperto proprio di V_n $U = (U_i)_{i \in I}$ ed esiste una famiglia di funzioni $f_U = (f_i)_{i \in I}$ con f_i differenziabile in U_i tale che

(2.3)
$$\forall i \in I$$
 $\delta^3 f_i = \omega_{|U_i}$.

Indicato con $I_*^2 = \{(i,j) \in I^2 | U_i \cap U_j \neq \emptyset\}$ si ponga:

(2.4)
$$\forall (i,j) \in I^2 \quad f_{ij} = f_{i} - f_{j}$$
.

Per la (2.3) e (2.4) risulta:

a)
$$\forall (i,j) \in I_*^2 \quad \delta^3 f_{ij} = 0 \quad \forall (i,j) \in I_*^2$$
;

b)
$$f_{U}^{1} = \{f_{ij}\}_{(i,j) \in I_{*}^{2}} \in Z_{\Gamma^{2}}^{1}(U)$$
.

Poiché si prova facilmente che la classe $f^1 = T^U([f_U^1]) \in \mathcal{H}_{\Gamma^2}^1$ non varia al variare del ricoprimento U e della famiglia f_U , si è costruita un'applicazione, che risulta un \mathbb{R} -omomorfismo:

$$\phi : \omega \in C^3_{r^2} \rightarrow f^1 \in \mathcal{P}^1_{r^2}.$$

Risulta $\ker \phi = E_{\Gamma^2}^3$ e quindi, per il teorema fondamentale sugli omomorfismo tra spazi vettoriali, dall'omomorfismo ϕ si ottiene il monomorfismo

$$\Phi : [\omega] \in C_{\Gamma^2}^3 / \text{Ker} \phi = H_{\Gamma^2}^3 \rightarrow f_{\epsilon}^{\dagger} \mathcal{H}_{\Gamma^2}^{\dagger} .$$

Si proverà ora che Φ è surgettiva e quindi la proposizione sarà completamente dimostrata.

Sia $p^1 \in \mathcal{H}^1_{\Gamma^2}$, allora esisterà (per l'ultima delle relazioni (2.2))un ricoprimento aperto proprio $U = (U_i)_{i \in I}$ tale che $p^1 \in T^U(\mathcal{H}^1_{\Gamma^2}(U))$ e sia $[p_U^1]$, con $p_U^1 = \{p_{ij}\}_{(i,j)\in I^2_*} \in Z^1_{\Gamma^2}(U)$, un qualsiasi elemento di $(T^U)^{-1}(p^1)$.

Si consideri ora una partizione dell'unità di V_n $\{\phi_m\}_{m\in \mathbb{N}}^+$ relativa al ricoprimento U e sia $h: m\in \mathbb{N}^+ \to h(m)\in I$ un'applicazione di raffinamento relativa ad U e a $\{\sup p\phi_m\}_{m\in \mathbb{N}}^+$ tale che $\forall m\in \mathbb{N}^+$ supp $\phi_m\subseteq U_{h(m)}$.

Per ogni i ϵ I e per ogni m ϵ N^{\dagger} si consideri la funzione f_{im} definita in U_i nel seguente modo:

(2.5)
$$f_{im} = \begin{cases} 0 & \text{in } U_i - U_h(m) \\ p_{ih(m)}^{\phi_m} & \text{in } U_i \cap U_h(m) \end{cases};$$

f è differenziabile in U, essendo ivi localmente differenziabile.

Per (2.5) risulta supp $f_{im} \subseteq \text{supp } \phi_m$, ed essendo $\{\text{supp}\phi_m\}_{m\in I\!\!N}^+$ un ricoprimento localmente finito di V_n , $\{\text{supp } f_{im}\}_{m\in I\!\!N}$ è un ricoprimento localmente finito di U_i . Ne segue che per ogni p ϵ U_i esiste un intorno aperto U_p di p ed esiste un sottoinsieme finito $N_p \neq \emptyset$ di $I\!\!N$ tali che in U_p si abbia:

$$m \in N^+$$
 $f_{im} = \sum_{m \in N_p} f_{im}$.

Allora per ogni i ϵ I la funzione f_i definita in U_i nel seguente modo $f_i = \sum_{m \in \mathbb{N}} + f_{im}$

è differenziabile in U, essendolo ivi localmente.

In questo modo si è ottenuta la famiglia di funzioni $f_U = \{(U_i, f_i)\}_{i \in I}$ relativa al ricoprimento U per la quale risulta per (2.5):

$$\forall (ij) \in I_{\#}^{2} \qquad f_{im} - f_{jm} = (p_{ih(m)} - p_{jh(m)}) \phi_{m} \qquad \text{in } U_{i} \cap U_{j} \cap U_{h(m)}$$

ed essendo

$$f_{im} = f_{jm} = \phi_m = 0$$
 in $U_i \cap U_j \cap U_h(m)$

risulta:

$$f_{im} - f_{jm} = p_{ij} \phi_m$$
 in $U_i \cap U_j \neq \emptyset$.

Per cui, sommando per m variabile in N^+ ed essendo $\sum_{m \in N} + \phi_m = 1$ si ha: (2.6) $f_i - f_i = p_{ii}$ $\forall (i,j) \in I_*^2$,

cioé l'1-cociclo determinato dalla famiglia $f_U = (f_i)_{i \in I}$ coincide con l'1-cociclo p_{II}^1 . Essendo inoltre $\delta^3 p_{ij} = 0$, da (2.6) segue che:

$$\delta^3 f_i = \delta^3 f_i \qquad \forall (ij) \in I^2_*$$
.

Ponendo allora per ogni i \in I $\omega|_{U_1} = \delta^3 f_1$, risulta che il campo di tensori $\omega \in \mathcal{O}_3^0$ così definito, è chiuse rispetto a δ^3 e la famiglia di funzioni f_U è ad esso associata. Poiché l'1-cocíclo f_U^1 determinato da f_U coincide con l'1-cocíclo p_U^1 , si ha:

$$f^{1} = T^{U}(f_{U}^{1}) = T^{U}p_{U}^{1}) = p^{1}$$

$$\Phi([\omega]) = \phi(\omega) = f^{1} = p^{1}$$

e quindi

 ${\sf cio\'e}$ Φ è surgettiva e quindi la proposizione è completamente provata.

3. ESEMPI

Sia assegnata su V_n una connessione Γ^2 del secondo ordine di specie (0,1): per provare che lo spazio di coomologia $H^3_{\Gamma^2}$ (isomorfo a $\mathcal{H}^1_{\Gamma^2}$) é un sovra spazio, in generale proprio, dello spazio \mathcal{H}^1 di coomologia 1-dimensionale a coefficienti reali e quindi dello spazio H^1 di coomologia 1-dimensionale di De Rham, si osservi che, per (2.1), una funzione differenziabile ha differenziale covariante terzo rispetto a Γ^2 nullo se in ogni carta locale (U,ϕ) la sua immagine f in tale carta é tale che:

$$(3.1) \qquad \partial_{ijh}f + C_{ij,h}^{pq} \partial_{pq}f + D_{ij,h}^{p} \partial_{p}f = 0.$$

Le condizioni d'integrabilità del sistema (3.1), tenuto conto del teorema sull'invertibilità dell'ordine delle derivazioni, sono :

$$(3.2) \qquad (C_{ij,h}^{pq}C_{pq,l}^{rs} - a_{1}C_{ij,h}^{rs} - \delta_{1}^{s}D_{ij,h}^{r} - C_{ij,l}^{pq}C_{pq,h}^{rs} + a_{h}C_{ij,l}^{rs}) + \delta_{h}^{s}D_{ij,l}^{r}) + \delta_{h}^{s}D_{ij,l}^{r}) + C_{ij,h}^{pq}D_{pq,l}^{r} - a_{1}D_{ij,h}^{r} - C_{ij,l}^{pq}D_{pq,h}^{r} + a_{h}D_{ij,l}^{r}) + \delta_{h}^{s}D_{ij,l}^{r}) + \delta_{h}^{s}D_{ij,l}^{r}$$

E' immediato che il sistema (3.1), qualunque sia r^2 , é soddisfatto dalle funzioni localmente costanti; se esso é soddisfatto soltanto dalle funzioni localmente costanti, $H_{r^2}^3$ é isomorfo allo spazio \mathcal{H}^1 di coomologia l-di mensionale a coefficienti reli e quindi ad H^1 .

Se il sistema (3.1) è soddisfatto anche da altre funzioni, H_{n2}^3 è un sovra spazio proprio di H^1 : ciò si verifica in alcuni esempi che saranno ora illu strati.

E' noto che se T è una connessione lineare simmetrica localmente piatta, es i ste un atlante in ogni carta del quale le componenti di T sono identicamente nul le e viceversa. Da ciò e dalle (1.9) e (1.10) segue facilmente la seguente:

Prop. 1.- Se r^2 è una connessione del secondo ordine di specie (0,1) dedotta da una connessione lineare simmetrica Γ , allora Γ è localmente piatta se e solo se esiste un atlante in ogni carta del quale le componenti $(C_{i,i}^{pq}, D_{i,j}^{p})$ di Γ^2

nulle.

Sia r^2 una connessione del secondo ordine dedotta da una connessione lineare localmente piatta, per la proposizione precedente esiste un atlante (U_a, ϕ_a) ae che non è restrittivo supporre numerabile e costituito da sfe roidi - in ogni carta del quale le componenti $C_{ij,h}^{pq}$ e $D_{ij,h}^{p}$ di r^2 sono identicamente nulle. Perciò in tale atlante i cambiamenti di coordinate sono lineari e il sistema (3.1) diventa:

(3.3)
$$\partial_{i,ih} f = 0 \qquad \text{in} \quad (U_a, \phi_a).$$

Ne segue che le funzioni aventi differenziale covariante terzo rispetto a Γ^2 nullo, sono le funzioni di 2° grado a coefficienti costanti delle coordinate x^i relative alla carta (U_a, ϕ_a) e pertanto lo spazio vettoriale P_U del fascio P_{Γ^2} relativo ad U_a è isomorfo a R $\frac{n(n+3)}{2}+1$.

Inoltre per ogni (a,b) $\in \mathcal{A}^2$ tale che $U_a \cap U_b \neq \emptyset$, ogni funzione f tale che $\delta^3 f = 0$ in $U_a \cap U_b$ è una funzione di 2° grado a coefficienti localmente costanti delle coordinate di un punto di $U_a \cap U_b$ in una qualunque delle due carte (U_a, ϕ_a) o (U_b, ϕ_b) . Quindi lo spazio vettoriale $P_{U_a} \cap U_b$ è isomorfo a $\left(\mathbb{R} \frac{n(n+3)}{2} + 1\right)^V$, dove si è indicato con v il numero delle componenti connesse di $U_a \cap U_b$. Essendo lo spazio vettoriale delle funzioni localmente costanti relativo ad $U_a \cap U_b$ isomorfo a \mathbb{R}^V , ne segue facilmente che $H_{\Gamma^2}^3$ è isomorfo alla potenza $\left(\frac{n(n+3)}{2} + 1\right)$ -esima dello spazio \mathcal{H}^1 di coomologia 1-dimensionale, a coefficienti reali, quindi:

$$\dim H_{\Gamma^2}^3 = (\frac{n(n+3)}{2} + 1) \cdot \dim H^1.$$

Sia ora V_n una varietà differenziabile che ammetta un atlante $\{(U_a,\phi_a)\}_{a\in\{1,2,3\}}$ tale che per ogni (a,b) e $\{1,2,3\}^2$ $U_a\cap U_b$ sia connesso e dette X_a^i le coordinate dei punti di V_n nella carta (U_a,ϕ_a) ,

i cambiamenti di coordinate siano dati da:

$$\frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = \frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = -\delta^{i}_{j}; \qquad \frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = \frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = -\delta^{i}_{j}; \qquad \frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = \frac{\partial \dot{x}^{i}}{\partial \dot{x}^{j}} = \delta^{i}_{j}$$

Su tale varietà si consideri una connessione lineare Γ avente in ogni (U_a, ϕ_a) componenti tutte nulle ad eccezione di $\Gamma_{12}^1 = \Gamma_{21}^1 =$

= $h \in \mathbb{R} - \{0\}$ e sia r^2 la connessione del 2° ordine dedotta da tale connessione lineare.

Tenendo conto di (1.8) e (1.9), i sistemi (3.1) e (3.2) diventano rispettivamente

(3.4)
$$\begin{cases} \frac{\partial}{\partial 121} f - 2h \frac{\partial}{\partial 11} f = 0 \\ \frac{\partial}{\partial 122} f - 2h \frac{\partial}{\partial 12} f + h^2 \frac{\partial}{\partial 1} f = 0 \\ \frac{\partial}{\partial ijh} f = 0 \end{cases} \quad \forall (ij,h) \neq \begin{cases} (1,2,1) \\ (1,2,2) \end{cases}$$

Derivando ulteriormente l'ultima equazione del sistema (3.5) e tenendo conto dell'invertibilità dell'ordine delle derivazioni si ottiene

$$\partial_{\gamma} f = 0$$

che è l'unica condizione d'integrabilità. Ne segue che il sistema (3.4) e (3.5) equivale al sistema:

$$\partial_{i,ih} f = 0 \quad \forall (i,j,h)$$

$$\partial_{\gamma} f = 0$$

le cui soluzioni sono tutte e sole le funzioni del tipo:

$$f(x_1,...,x_n) = c_{22} x_2^2 + ... + c_{nn} x_n^2 + c_{23} x_2 x_3 + ... + c_{n-1n} x_{n-1} x_n + c_{02} x_2 + ... + c_{on} x_n + c_{00}$$

con c_{ij} costanti reali e (x^i) coordinate nella carta (U_a, ϕ_a) .

Ne segue che lo spazio vettoriale P_U del fascio P_Γ relativo ad U_a è isomorfo a $IR \frac{n(n+1)}{2}$ e quindi, come è facile verificare, lo spazio

 $H_{\Gamma^2}^3$ è isomorfo alla potenza ($\frac{n(n+1)}{2}$)-esima dello spazio di coomologia l-dimensionale \mathcal{H}^1 a coefficienti reali e quindi

$$\dim H_{\Gamma^2}^3 = \left(\frac{n(n+1)}{2}\right) \dim H^{1}.$$

4. SPAZI DI COOMOLOGIA ASSOCIATI AD UNA PSEUDOCONNESSIONE LINEARE.

In modo analogo a quanto fatto nel n.2 per le connessioni del secondo or dine di specie (0,1), si determinerà ora una successione di spazi di coomologia associata ad una pseudoconnessione lineare su V_n .

E' noto (cfr. [5]) che una pseudoconnessione lineare Γ su V_n é definita da una applicazione $D: X \longrightarrow D_X$ \mathcal{F} -lineare diXnell' \mathcal{F} -modulo delle de rivazioni di $\mathcal{T}= \mathcal{F}_{r,s=0}$. Resta così determinato il seguente campo tenso riale A di specie (1,1)

$$A: (f,X) \in \mathcal{F} \times \mathcal{X} \longrightarrow A(f,X) = D_X f$$

detto campo fondamentale della pseudoconnessione; si ha pertanto:

$$\forall f \in \mathcal{F}, \forall (X,Y) \in \mathcal{X}^2 \quad D_X(fY) = f D_XY + A(f,X)Y$$
.

Se (U,ϕ) é una carta locale di V_n con $\phi=(x^1,...x^n)$, posto $\frac{\partial}{\partial x^1}=e_i$, le funzioni A_i^j e Γ_{ij}^k così definite su U:

$$(D_{U})_{e_{i}}^{x^{j}} = A_{i}^{j}, \qquad (D_{U})_{e_{i}}^{e_{j}} = r_{ij}^{k} e_{k}$$

si chiamano <u>componenti</u> di Γ nella carta (U,ϕ).

Se Ke C_s , si chiama <u>pseudodifferenziale covariante</u> di K e si indica DK il campo tensoriale di specie (r,s+1) definito per ogni $X_1, ... X_s, Y \in \mathcal{X}$ da:

$$(4.1) (DK)(X_1,...,X_s,Y) = (D_YK)(X_1,...,X_s).$$

Per ogni m> 1 lo <u>pseudodifferenziale covariante m-esimo</u> D^MK é definito induttivamente da

$$D^{m}K = D(D^{m-1}K).$$

Siano A_j^i e Γ_{ij}^k le componenti di Γ in una carta locale (U,ϕ) e siano $\omega_{j_1} \cdots_{j_s}$ le componenti di un campo di tensori ω \mathcal{C}_s^o nella stessa carta, da (4.1) segue allora che le componenti $\omega_{j_1} \cdots_{j_s}$, k di $D\omega$ sono:

(4.2)
$$\omega_{j_1\cdots j_s,k} = A_k^h \partial_h \omega_{j_1\cdots j_s} - \sum_{B=1}^s \Gamma_{kj_B}^h \omega_{j_1\cdots h\cdots j_s}.$$

Si ponga per ogni f $\in \overline{\mathcal{F}}$

$$\delta^{1}f = df$$
e per ogni q>1
$$\delta^{q}f = D^{q-1}(df);$$

in questo modo, per ogni q≥1, si é definita un'applicazione

$$\delta^q: f \in \overline{\mathcal{I}} \longrightarrow \delta^q f \in \mathcal{T}_q^0$$

che si chiamerà differenziazione covariante q-esima rispetto alla pseude connessione lineare :

Indicate con δ_1 ... f le componenti di δ^q f in una carta locale (U,ϕ) , per la (4.2) risulta ad esempio:

$$\delta_{i}f = \partial_{i}f;$$

$$\delta_{i_{1}i_{2}}f = A^{h}_{i_{2}}\partial_{i_{1}h}f - r^{h}_{i_{2}i_{1}}\partial_{h}f;$$

$$\delta_{i_{1}i_{2}i_{3}}f = A^{h}_{i_{3}}A^{h_{1}}_{i_{2}}\partial_{i_{1}h_{1}h_{2}}f + (\delta^{h_{1}}_{i_{1}}A^{r}_{i_{3}}\partial_{r}A^{h_{2}}_{i_{2}} - A^{h_{1}}_{i_{3}}r^{h_{2}}_{i_{2}i_{1}} - A^{h_{1}}_{i_{3}}r^{h_{2}} + (A^{h_{1}}_{i_{3}}A^{h_{1}}_{i_{2}}r^{h_{2}}_{i_{3}i_{1}} - A^{h_{1}}_{i_{3}i_{2}}r^{h_{2}}_{i_{3}i_{1}} - \delta^{h_{2}}_{i_{1}}A^{h_{1}}_{r}r^{r}_{i_{3}i_{2}}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{2}k}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{3}i_{1}}) \partial_{h_{1}h_{2}}f + (A^{r}_{i_{3}}\partial_{r}r^{h}_{i_{2}i_{1}} + r^{h}_{i_{3}i_{1}}r^{h}_{i_{3}i_{1}}) \partial_{h_{1}h_{2}}f + (A^{h}_{i_{3}}\partial_{r}r^{h}_{i_{3}i_{1}} + A^{h}_{i_{3}i_{1}}r^{h}_{i_{3}i_{1}}) \partial_$$

Un campo $\omega \in \mathcal{T}_q^0$ si dirà <u>esatto</u> rispetto a ε^q se esiste $f \in \mathcal{F}$ tale che $\varepsilon^q f = \omega$; ne segue che ω é esatto se e solo se esiste $f \in \mathcal{F}$ tale che, qualunque sia la carta locale (U,ϕ) nella quale ω abbia componenti $\omega_1 \cdots \omega_q$, risulti :

Un campo $\omega \in \mathbb{Z}_q^o$ si dirà chiuso rispetto a δ^q se é localmente esatto, cioé se per ogni p $\in \mathbb{V}_n$ esiste una carta locale (U, ϕ) di \mathbb{V}_n tale che p $\in \mathbb{U}$ ed esiste una funzione f differenziabile in \mathbb{U} per la quale sia verificata la (4.3).

Indicati con E_{Γ}^{q} e con C_{Γ}^{q} gli insiemi dei campi di tensori q-pli rispettivamente esatti e chiusi rispetto a Γ , risulta $E_{\Gamma}^{q} = \delta^{q}(\mathcal{F})$, ed essendo δ^{q} un omomorfismo E_{Γ}^{q} é un sottospazio di \mathcal{T}_{q}^{o} . E' inoltre faci le verificare che anche C_{Γ}^{q} é un sottospazio di \mathcal{T}_{q}^{o} e che contiene E_{Γ}^{q} .

Lo spazio quoziente $C_{\Gamma}^{q}/E_{\Gamma}^{q} = H_{\Gamma}^{q}$ si chiama spazio di coomologia di V_{η} rispetto a Γ dei campi di tensori covarianti q-pli.

Si é così costruita una successione di spazi di coomologia $\{H_{\Gamma}^{q}\}_{q\in\mathbb{N}^{+}}$ di cui il primo H_{Γ}^{1} coincide manifestamente con lo spazio di coomologia 1-dimensionale H^{1} di De Rham e quindi é un invariante topologico di V_{n} , mentre i rimanenti sono degli invarianti di V_{n} dipendenti dalla pseudoconnessione Γ .

Si consideri per ogni q>1 il fascio di funzioni su V_n ottenuto associan do ad ogni aperto A di V_n lo spazio vettoriale su R ${m P}_A^q$ delle funzioni f_A differenziabili in A tali che :

$$\delta^{q} f_{A} = 0 \text{ in } A,$$

e ad ogni coppia di aperti A e B tali che A B l'omomorfismo di restrizio ne $i_B^A: \mathcal{P}_A^q \dashrightarrow \mathcal{P}_B^q$ che ad ogni $f_A \in \mathcal{P}_A^q$ fa corrispondere la sua restrizione a B. Tale fascio si indicherà con \mathcal{P}_Γ^q e si chiamerà <u>fascio</u> delle funzioni a differenziale covariante q-esimo rispetto a I nullo.

Indicato con $\mathcal{H}_{\Gamma}^{q,1}$ lo spazio di coomologia l-dimensionale di V_n a coefficienti nel fascio \mathcal{P}_{Γ}^q si dimostra in modo analogo alla Prop.1 del n.2 che: per ogni q>1 lo spazio H_{Γ}^q é isomorfo allo spazio $\mathcal{H}_{\Gamma}^{q,1}$.

BIBLIOGRAFIA

- [1] ABATANGELO V. LARATO B. Coomologia a coefficienti nel fascio delle funzioni a gradiente parallelo su una varietà a connessione lineare, Rend.Sem.Fac.Sc.Univ. Cagliari,L,1-2, 1980.
- [2] BOMPIANI E. Connessioni del secondo ordine, Rend.Acc.Naz. Lincei, (8), 1, 1946.
- [3] BISHOP R.L. GOLDBERG S.I. Tensor Analysis on Manifolds, Mac Millan Company, New York, 1968.
- [4] DE RHAM G. Varietés differentiables, Act.Sci.et Ind., 1222, Paris, Hermann, 1960.
- [5] DI COMITE C. Sulle connessioni del secondo ordine, Ann.Mat. Pura e Appl.,(IV),LXXIX,1968.
- [6] DI COMITE C. Pseudoconnessioni lineari su una varietà differenziabile, Ann.Mat. Pura e Appl.,(IV),LXXXIII,1969.
- [7] GODEMENT R. Topologie algébrique et théorie des faisceaux, Act. Sci.et Ind.,1252;Paris, Hermann, 1958.
- B] HELGASON S. Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1978.
- [9] HIRZEBRUCH F. Topological methods in algebraic geometry, Springer-Verlag, New York, 1966.
- [10] MASTROGIACOMO P. Spazi di coomologia dei campi di 2-getti e coomologia l-dimensionale a coefficienti nel fascio delle funzioni a gradiente parallelo, Rend.Acc.Sc.Fis.Mat. Soc.Naz.Sc.Arti, Napoli,IV, XLIII, 1976.

[11] MASTROGIACOMO P.

Coomologia dei campi di getti e coomologia dei campi di tensori covarianti su una varie tà a connessione lineare, Le Matematiche, Vol. XXXI, Fasc. II, 1976.

[12] SCHAUTEN J.A.

Ricci Calculus, Springer-Verlag, Berlino, 1954.

[13] TALLINI G.

Introduzione alla coomologia a coefficienti
in un fascio, Confer.Sem.Mat.,(117),Bari,1969

[14] TALLINI G.

Una dimostrazione del teorema di De Rham, Conf fer.Sem.Mat.,(139),Bari, 1975.

[15] YANO K. BOCHNER S.

Curvature and Betti numbers, Princeton, University Press, 1953.